基于JavaScript 实现近邻算法以及优化方案

2024-06-10 23:36

本文主要是介绍基于JavaScript 实现近邻算法以及优化方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

近邻算法(K-Nearest Neighbors,简称 KNN)是一种简单的、广泛使用的分类和回归算法。它的基本思想是:给定一个待分类的样本,找到这个样本在特征空间中距离最近的 k 个样本,这 k 个样本的多数类别作为待分类样本的类别。

本教程文章将详细讲解如何使用 JavaScript 实现一个简单的 KNN 算法,我们会从理论出发,逐步从零开始编写代码。

理论基础

距离度量

KNN 算法的核心是计算两个样本之间的距离,常用的距离度量方法有:

  • 欧氏距离(Euclidean Distance)
  • 曼哈顿距离(Manhattan Distance)

在本教程中,我们将使用最常见的欧氏距离来计算样本之间的距离。

欧氏距离公式如下:

[ d(p, q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} ]

其中 ( p ) 和 ( q ) 是两个 n 维空间中的点, ( p_i ) 和 ( q_i ) 是这两个点在第 ( i ) 维的坐标。

算法步骤

  1. 计算距离:计算待分类样本与训练样本集中所有样本的距离。
  2. 排序:按距离从小到大对所有距离进行排序。
  3. 选择最近的 k 个样本:从排序后的结果中选择距离最近的 k 个样本。
  4. 投票:多数投票决定待分类样本的类别。

实现步骤

初始化数据

首先,我们需要一些样本数据来进行分类。假设我们有以下二维数据集:

const trainingData = [{ x: 1, y: 2, label: 'A' },{ x: 2, y: 3, label: 'A' },{ x: 3, y: 3, label: 'B' },{ x: 6, y: 5, label: 'B' },{ x: 7, y: 8, label: 'B' },{ x: 8, y: 8, label: 'A' },
];

计算距离

编写一个函数来计算两个点之间的欧氏距离:

function euclideanDistance(point1, point2) {return Math.sqrt(Math.pow(point1.x - point2.x, 2) +Math.pow(point1.y - point2.y, 2));
}

排序并选择最近的 k 个样本

编写一个函数,根据距离对样本进行排序,并选择距离最近的 k 个样本:

function getKNearestNeighbors(trainingData, testPoint, k) {const distances = trainingData.map((dataPoint) => ({...dataPoint,distance: euclideanDistance(dataPoint, testPoint)}));distances.sort((a, b) => a.distance - b.distance);return distances.slice(0, k);
}

多数投票

编写一个函数,通过多数投票来决定类别:

function majorityVote(neighbors) {const voteCounts = neighbors.reduce((acc, neighbor) => {acc[neighbor.label] = (acc[neighbor.label] || 0) + 1;return acc;}, {});return Object.keys(voteCounts).reduce((a, b) => voteCounts[a] > voteCounts[b] ? a : b);
}

主函数

最后,编写一个主函数来整合上述步骤,完成 KNN 算法:

function knn(trainingData, testPoint, k) {const neighbors = getKNearestNeighbors(trainingData, testPoint, k);return majorityVote(neighbors);
}

测试

现在我们来测试一下这个 KNN 实现:

const testPoint = { x: 5, y: 5 };
const k = 3;const result = knn(trainingData, testPoint, k);
console.log(`The predicted label for the test point is: ${result}`);

运行这个代码,你会得到预测的类别。

优化方案

虽然我们已经实现了一个基本的 KNN 算法,但在实际应用中,我们还可以进行一些优化和扩展,使其更加高效和实用。

优化距离计算

在大数据集上,计算每个点之间的欧氏距离可能会很耗时。我们可以通过一些高效的数据结构如 KD 树(K-Dimensional Tree)来进行快速邻近搜索。以下是一个简单的 KD 树的实现示例:

class KDTree {constructor(points, depth = 0) {if (points.length === 0) {this.node = null;return;}const k = 2; // 2Dconst axis = depth % k;points.sort((a, b) => a[axis] - b[axis]);const median = Math.floor(points.length / 2);this.node = points[median];this.left = new KDTree(points.slice(0, median), depth + 1);this.right = new KDTree(points.slice(median + 1), depth + 1);}nearest(point, depth = 0, best = null) {if (this.node === null) {return best;}const k = 2;const axis = depth % k;let nextBranch = null;let oppositeBranch = null;if (point[axis] < this.node[axis]) {nextBranch = this.left;oppositeBranch = this.right;} else {nextBranch = this.right;oppositeBranch = this.left;}best = nextBranch.nearest(point, depth + 1, best);const dist = euclideanDistance(point, this.node);if (best === null || dist < euclideanDistance(point, best)) {best = this.node;}if (Math.abs(point[axis] - this.node[axis]) < euclideanDistance(point, best)) {best = oppositeBranch.nearest(point, depth + 1, best);}return best;}
}const points = trainingData.map(point => [point.x, point.y, point.label]);
const kdTree = new KDTree(points);const nearestPoint = kdTree.nearest([testPoint.x, testPoint.y]);
console.log(`The nearest point is: ${nearestPoint[2]}`);

考虑不同距离度量

不同的距离度量方法在不同的场景下可能会有不同的效果。除了欧氏距离外,还可以尝试以下几种距离度量方法:

  • 曼哈顿距离(Manhattan Distance)
  • 闵可夫斯基距离(Minkowski Distance)
  • 切比雪夫距离(Chebyshev Distance)

我们可以编写一些函数来实现这些距离度量方法,并在主函数中进行选择:

function manhattanDistance(point1, point2) {return Math.abs(point1.x - point2.x) + Math.abs(point1.y - point2.y);
}function minkowskiDistance(point1, point2, p) {return Math.pow(Math.pow(Math.abs(point1.x - point2.x), p) +Math.pow(Math.abs(point1.y - point2.y), p),1 / p);
}function chebyshevDistance(point1, point2) {return Math.max(Math.abs(point1.x - point2.x), Math.abs(point1.y - point2.y));
}

调整 k 值

选择合适的 k 值对算法的性能至关重要。过小的 k 值可能导致过拟合,而过大的 k 值可能导致欠拟合。一个常见的做法是通过交叉验证来选择最优的 k 值。

处理多维数据

在实际应用中,数据通常是多维的。我们的算法已经可以处理二维数据,但对于多维数据,只需稍微调整距离计算函数即可:

function euclideanDistanceND(point1, point2) {let sum = 0;for (let i = 0; i < point1.length; i++) {sum += Math.pow(point1[i] - point2[i], 2);}return Math.sqrt(sum);
}

代码重构

为了更好地组织代码,我们可以将不同的功能模块化:

class KNN {constructor(k = 3, distanceMetric = euclideanDistance) {this.k = k;this.distanceMetric = distanceMetric;}fit(trainingData) {this.trainingData = trainingData;}predict(testPoint) {const neighbors = this.getKNearestNeighbors(testPoint);return this.majorityVote(neighbors);}getKNearestNeighbors(testPoint) {const distances = this.trainingData.map((dataPoint) => ({...dataPoint,distance: this.distanceMetric(dataPoint, testPoint)}));distances.sort((a, b) => a.distance - b.distance);return distances.slice(0, this.k);}majorityVote(neighbors) {const voteCounts = neighbors.reduce((acc, neighbor) => {acc[neighbor.label] = (acc[neighbor.label] || 0) + 1;return acc;}, {});return Object.keys(voteCounts).reduce((a, b) => voteCounts[a] > voteCounts[b] ? a : b);}
}// 测试代码
const knnClassifier = new KNN(3, euclideanDistance);
knnClassifier.fit(trainingData);
const predictedLabel = knnClassifier.predict(testPoint);
console.log(`The predicted label for the test point is: ${predictedLabel}`);

通过这种方式,我们不仅提高了代码的可读性和可维护性,还为将来更复杂的扩展和优化打下了基础。

结语

KNN 算法简单易懂,适用于很多分类问题,特别是在数据规模不大时。然而,KNN 的计算复杂度较高,尤其在高维数据和大规模数据集上,因此在实际应用中常常需要结合其他技术进行优化。

这篇关于基于JavaScript 实现近邻算法以及优化方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049591

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal