【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】

本文主要是介绍【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


系列文章目录


目录

  • 系列文章目录
  • 一、功能设计
      • 项目代码设计重点提取
  • 二、数据可视化
  • 三、逻辑回归模型构建与评估


一、功能设计

项目代码设计重点提取

  • 目标:对化妆品销售数据进行深入分析与挖掘,通过数据可视化和逻辑回归模型,为商家提供市场洞察和决策支持。

  • 数据加载和预处理

    • 使用Pandas库读取Excel文件并预览数据。
    • 处理日期格式不统一和数值字段包含非数值字符的问题,编写自定义日期解析函数和正则表达式。
    • 确保所有字段均为有效的数值类型,移除缺失值行。
  • 数据可视化

    • 使用Matplotlib库绘制多种图表,展示数据特征和趋势:
      • 折线图:展示订单金额随日期的变化,揭示销售的时间趋势。
      • 散点图:分析订购数量与金额的关系,显示订购数量对总金额的影响。
      • 柱状图:显示各省份的总金额分布,为区域销售策略的制定提供依据。
      • 饼状图:展示各省份的订单数量占比,直观了解不同区域的市场份额。
      • 雷达图:比较各商品编号的订购数量、订购单价和金额,评估不同商品的销售表现。
      • 箱线图:展示订购数量和金额的分布情况,识别数据中的异常值和分布特征。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

  • 逻辑回归模型

    • 通过定义高金额订单的阈值,将目标变量分为高金额和低金额两类。
    • 使用LabelEncoder将分类变量转换为数值。
    • 将数据分为训练集和测试集,利用逻辑回归模型进行训练和预测。
    • 评估模型性能,计算准确率、混淆矩阵和分类报告。
    • 绘制热力图和目标变量分布图,分析特征间的相关性和目标变量的分布情况。
  • 整体设计思路

    • 注重数据清理、可视化和建模三部分的紧密结合。
    • 通过系统化的分析方法,从多角度挖掘数据价值,为商家提供全面的市场分析和决策支持。
    • 确保分析结果的准确性和可靠性,为后续的模型优化和应用拓展提供坚实基础。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈


二、数据可视化

折线图:展示订单金额随日期变化的趋势,帮助分析销售的时间变化。

plt.plot(df['订单日期'], df['金额'], marker='o', linestyle='-', color='b')

折线图展示了订单金额随日期的变化趋势,帮助了解销售的时间分布和变化规律。通过识别销售高峰期和低谷期,可以优化销售策略、安排促销活动和调整库存管理,提升销售效率。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

散点图:分析订购数量与金额之间的关系,揭示数量对总金额的影响。

plt.scatter(df['订购数量'], df['金额'], c='r', marker='x')

散点图揭示了订购数量与订单金额之间的关系,帮助理解不同订购数量对销售金额的影响。通过观察散点的分布情况,可以发现订购数量与销售金额的相关性,识别出表现异常的订单,并为商品定价策略和销售预测提供依据。
在这里插入图片描述

柱状图:显示各省份的总金额分布,为区域销售策略提供依据。

plt.bar(province_amount['所在省份'], province_amount['金额'], color='g')

柱状图显示了各省份的总销售金额,为提供了区域销售的概览。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

饼状图:展示各省份的订单数量占比,直观了解不同区域的市场份额。

plt.pie(province_count, labels=province_count.index, autopct='%1.1f%%', startangle=140)

饼状图直观展示了各省份订单数量在总订单中的占比,帮助了解不同区域的市场份额和客户分布情况。通过比较各省份的占比,可以发现市场渗透率较高的区域和潜在的增长区域,为市场扩展和推广活动提供指导。
在这里插入图片描述

箱线图:展示订购数量和金额的分布情况,识别数据中的异常值和分布特征。

axes[0].boxplot(df['订购数量'])
axes[1].boxplot(df['金额'])

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈


三、逻辑回归模型构建与评估

功能:构建逻辑回归模型,预测高金额订单,评估模型性能。

具体操作: 定义目标变量(高金额订单),并使用LabelEncoder将分类变量转换为数值。将数据分为训练集和测试集,确保模型的训练和评估过程科学合理。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

模型训练:
使用逻辑回归模型对训练集进行训练,构建预测模型。

model = LogisticRegression()
model.fit(X_train, y_train)

模型评估:
进行预测并评估模型性能,计算准确率、混淆矩阵和分类报告,全面评估模型的预测效果。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

在这里插入图片描述

在这里插入图片描述
热力图:展示特征之间的相关性,帮助理解特征间的相互关系。热力图展示了各特征之间的相关性,帮助理解特征间的相互关系和对目标变量的影响。
在这里插入图片描述
目标变量分布图:展示高金额和低金额订单的数量分布,帮助理解目标变量的分布情况。目标变量分布图展示了高金额和低金额订单的数量分布情况,帮助直观了解目标变量的分布特征。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

在这里插入图片描述
订购数量与金额关系图:展示不同金额订单的订购数量分布。订购数量与金额关系图展示了不同金额订单的订购数量分布,并通过颜色区分高金额和低金额订单。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

这篇关于【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049555

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/