【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】

本文主要是介绍【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


系列文章目录


目录

  • 系列文章目录
  • 一、功能设计
      • 项目代码设计重点提取
  • 二、数据可视化
  • 三、逻辑回归模型构建与评估


一、功能设计

项目代码设计重点提取

  • 目标:对化妆品销售数据进行深入分析与挖掘,通过数据可视化和逻辑回归模型,为商家提供市场洞察和决策支持。

  • 数据加载和预处理

    • 使用Pandas库读取Excel文件并预览数据。
    • 处理日期格式不统一和数值字段包含非数值字符的问题,编写自定义日期解析函数和正则表达式。
    • 确保所有字段均为有效的数值类型,移除缺失值行。
  • 数据可视化

    • 使用Matplotlib库绘制多种图表,展示数据特征和趋势:
      • 折线图:展示订单金额随日期的变化,揭示销售的时间趋势。
      • 散点图:分析订购数量与金额的关系,显示订购数量对总金额的影响。
      • 柱状图:显示各省份的总金额分布,为区域销售策略的制定提供依据。
      • 饼状图:展示各省份的订单数量占比,直观了解不同区域的市场份额。
      • 雷达图:比较各商品编号的订购数量、订购单价和金额,评估不同商品的销售表现。
      • 箱线图:展示订购数量和金额的分布情况,识别数据中的异常值和分布特征。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

  • 逻辑回归模型

    • 通过定义高金额订单的阈值,将目标变量分为高金额和低金额两类。
    • 使用LabelEncoder将分类变量转换为数值。
    • 将数据分为训练集和测试集,利用逻辑回归模型进行训练和预测。
    • 评估模型性能,计算准确率、混淆矩阵和分类报告。
    • 绘制热力图和目标变量分布图,分析特征间的相关性和目标变量的分布情况。
  • 整体设计思路

    • 注重数据清理、可视化和建模三部分的紧密结合。
    • 通过系统化的分析方法,从多角度挖掘数据价值,为商家提供全面的市场分析和决策支持。
    • 确保分析结果的准确性和可靠性,为后续的模型优化和应用拓展提供坚实基础。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈


二、数据可视化

折线图:展示订单金额随日期变化的趋势,帮助分析销售的时间变化。

plt.plot(df['订单日期'], df['金额'], marker='o', linestyle='-', color='b')

折线图展示了订单金额随日期的变化趋势,帮助了解销售的时间分布和变化规律。通过识别销售高峰期和低谷期,可以优化销售策略、安排促销活动和调整库存管理,提升销售效率。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

散点图:分析订购数量与金额之间的关系,揭示数量对总金额的影响。

plt.scatter(df['订购数量'], df['金额'], c='r', marker='x')

散点图揭示了订购数量与订单金额之间的关系,帮助理解不同订购数量对销售金额的影响。通过观察散点的分布情况,可以发现订购数量与销售金额的相关性,识别出表现异常的订单,并为商品定价策略和销售预测提供依据。
在这里插入图片描述

柱状图:显示各省份的总金额分布,为区域销售策略提供依据。

plt.bar(province_amount['所在省份'], province_amount['金额'], color='g')

柱状图显示了各省份的总销售金额,为提供了区域销售的概览。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

饼状图:展示各省份的订单数量占比,直观了解不同区域的市场份额。

plt.pie(province_count, labels=province_count.index, autopct='%1.1f%%', startangle=140)

饼状图直观展示了各省份订单数量在总订单中的占比,帮助了解不同区域的市场份额和客户分布情况。通过比较各省份的占比,可以发现市场渗透率较高的区域和潜在的增长区域,为市场扩展和推广活动提供指导。
在这里插入图片描述

箱线图:展示订购数量和金额的分布情况,识别数据中的异常值和分布特征。

axes[0].boxplot(df['订购数量'])
axes[1].boxplot(df['金额'])

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈


三、逻辑回归模型构建与评估

功能:构建逻辑回归模型,预测高金额订单,评估模型性能。

具体操作: 定义目标变量(高金额订单),并使用LabelEncoder将分类变量转换为数值。将数据分为训练集和测试集,确保模型的训练和评估过程科学合理。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

模型训练:
使用逻辑回归模型对训练集进行训练,构建预测模型。

model = LogisticRegression()
model.fit(X_train, y_train)

模型评估:
进行预测并评估模型性能,计算准确率、混淆矩阵和分类报告,全面评估模型的预测效果。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

在这里插入图片描述

在这里插入图片描述
热力图:展示特征之间的相关性,帮助理解特征间的相互关系。热力图展示了各特征之间的相关性,帮助理解特征间的相互关系和对目标变量的影响。
在这里插入图片描述
目标变量分布图:展示高金额和低金额订单的数量分布,帮助理解目标变量的分布情况。目标变量分布图展示了高金额和低金额订单的数量分布情况,帮助直观了解目标变量的分布特征。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

在这里插入图片描述
订购数量与金额关系图:展示不同金额订单的订购数量分布。订购数量与金额关系图展示了不同金额订单的订购数量分布,并通过颜色区分高金额和低金额订单。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “化妆品逻辑” 获取。👈👈👈

这篇关于【python】python化妆品销售logistic逻辑回归预测分析可视化(源码+课程论文+数据集)【独一无二】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049555

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致