【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶

本文主要是介绍【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

前言

背景介绍

初始算法

优化算法

分析和应用

总结


前言

        见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》

        见《【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法》

背景介绍

        在一个嵌入式软件开发项目中,需要开发一个数据处理算法,功能是求解一个动态变化数组的平均值、极值和极值位号,并且具备动态剔除个别元素(元素序列不变)的功能。示例如下:

数组:2、4、6、8、10

剔除:第1个元素、第3个元素

求均值:(4 + 8 + 10)/ 3 = 7.3

求最小值:4

求最小值位号:2

求最大值:10

求最大值位号:5

初始算法

        一开始算法开发的思路非常简单,就是根据上述示例把求解过程拆分成两步,第一步构建剔除特定元素后的新数组,第二步分别求解统计结果,示例如下:

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;/* Model step function */
void untitled_step(void)
{real_T Array_min[5];real_T ArrayIndex;int32_T b_idx;int32_T b_k;int32_T e_k;int32_T i;/* MATLAB Function: '<Root>/MATLAB Function' incorporates:*  Constant: '<Root>/Constant'*/for (i = 0; i < 5; i++) {Array_min[i] = untitled_ConstP.Constant_Value[i];}Array_min[0] = 255.0;Array_min[2] = 255.0;untitled_Y.Out2 = 255.0;b_idx = 1;for (b_k = 1; b_k + 1 < 6; b_k++) {if (untitled_Y.Out2 > Array_min[b_k]) {untitled_Y.Out2 = Array_min[b_k];b_idx = b_k + 1;}}for (i = 0; i < 5; i++) {Array_min[i] = untitled_ConstP.Constant_Value[i];}Array_min[0] = 0.0;Array_min[2] = 0.0;untitled_Y.Out4 = 0.0;b_k = 1;for (i = 1; i + 1 < 6; i++) {if (untitled_Y.Out4 < Array_min[i]) {untitled_Y.Out4 = Array_min[i];b_k = i + 1;}}for (i = 0; i < 5; i++) {Array_min[i] = 0.0;}ArrayIndex = 0.0;for (i = 0; i < 5; i++) {if ((i + 1 != 1) && (i + 1 != 3)) {ArrayIndex++;Array_min[(int32_T)ArrayIndex - 1] = untitled_ConstP.Constant_Value[i];}}if (1.0 > ArrayIndex) {i = -1;} else {i = (int32_T)ArrayIndex - 1;}if ((int8_T)(i + 1) == 0) {ArrayIndex = 0.0;} else if ((int8_T)(i + 1) == 0) {ArrayIndex = 0.0;} else {ArrayIndex = Array_min[0];for (e_k = 2; e_k <= (int8_T)(i + 1); e_k++) {ArrayIndex += Array_min[e_k - 1];}}/* Outport: '<Root>/Out1' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out1 = ArrayIndex / (real_T)(int8_T)(i + 1);/* Outport: '<Root>/Out3' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out3 = b_idx;/* Outport: '<Root>/Out5' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out5 = b_k;
}/* Model initialize function */
void untitled_initialize(void)
{/* (no initialization code required) */
}/* Model terminate function */
void untitled_terminate(void)
{/* (no terminate code required) */
}

        上述代码仿真运行没有什么问题,从结果来看是符合功能需求的,示例如下:

        分析上述代码会发现构建新数组时存在一些问题。如果数组中出现大于255的值,或者小于0的负数时,算法就需要重新匹配。如果数组的Size大于5,或者剔除的个数大于2,算法也需要重新匹配。这种繁复的工作,是我们不希望看到的。

优化算法

        针对上述问题的分析和研究,发现Matlab官方提供了一个现成的函数功能,可用于剔除特定元素的数据统计算法,能让我们简化构建新数组的工作,也就免去繁复匹配算法的问题,示例如下:

        Tips:因为有NaN的存在,数组的数据类型如果不是double可能会出问题。例如NaN赋给uint8的数组是,对应元素就会变成0,再后续的求解函数中是按0对待的。

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;/* Model step function */
void untitled_step(void)
{real_T data[5];real_T y;int32_T c_k;int32_T i;int32_T k;boolean_T exitg1;/* MATLAB Function: '<Root>/MATLAB Function' incorporates:*  Constant: '<Root>/Constant'*/for (i = 0; i < 5; i++) {data[i] = untitled_ConstP.Constant_Value[i];}data[0] = (rtNaN);data[2] = (rtNaN);i = 0;k = 2;exitg1 = false;while ((!exitg1) && (k < 6)) {if (!rtIsNaN(data[k - 1])) {i = k;exitg1 = true;} else {k++;}}if (i == 0) {/* Outport: '<Root>/Out2' */untitled_Y.Out2 = (rtNaN);i = 1;} else {untitled_Y.Out2 = data[i - 1];for (k = i; k < 5; k++) {if (untitled_Y.Out2 > data[k]) {untitled_Y.Out2 = data[k];i = k + 1;}}}k = 0;c_k = 2;exitg1 = false;while ((!exitg1) && (c_k < 6)) {if (!rtIsNaN(data[c_k - 1])) {k = c_k;exitg1 = true;} else {c_k++;}}if (k == 0) {/* Outport: '<Root>/Out4' */untitled_Y.Out4 = (rtNaN);k = 1;} else {untitled_Y.Out4 = data[k - 1];for (c_k = k; c_k < 5; c_k++) {if (untitled_Y.Out4 < data[c_k]) {untitled_Y.Out4 = data[c_k];k = c_k + 1;}}}y = 0.0;c_k = 0;if (!rtIsNaN(data[1])) {y = data[1];c_k = 1;}if (!rtIsNaN(data[3])) {y += data[3];c_k++;}if (!rtIsNaN(data[4])) {y += data[4];c_k++;}/* Outport: '<Root>/Out1' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out1 = y / (real_T)c_k;/* Outport: '<Root>/Out3' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out3 = i;/* Outport: '<Root>/Out5' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out5 = k;
}/* Model initialize function */
void untitled_initialize(void)
{/* Registration code *//* initialize non-finites */rt_InitInfAndNaN(sizeof(real_T));
}/* Model terminate function */
void untitled_terminate(void)
{/* (no terminate code required) */
}

        Tips:从生成的C代码来看,底层逻辑的实现方法与前一种是类似的

        上述代码仿真运行也没有问题,结果符合需求,示例如下:

        分析上述算法的特点,不仅实现了项目中的需求,同时也利用NaNFlag为数据处理算法进行了降阶

分析和应用

        利用NaNFlag开发数据处理算法时,需要注意如下几点:

        1、两种算法生成的代码,底层逻辑都一样,但是是开发复杂度软件成熟度上差别好多,前者更适合用于逻辑探索和思维训练,后者跟适合于工程应用

        2、两种算法的开发自由度不同,可裁剪和压缩负载的空间也不同。前者可以根据实际应用裁剪出自己需要的数组大小,选取自己够用的数据类型,能更极致压缩算法对内存资源算力资源的消耗。后者是把一部分算法设计工作交给代码生成工具去做了,开发者就没有这么大的灵活度了。前者更适用于处理器资源有限的专用嵌入式项目,后者更实用于模块化平台化开发的项目。

总结

        以上就是本人在嵌入式软件开发中设计数据处理算法时,一些个人理解和分析的总结,首先介绍了它的背景情况,然后展示它的初始设计和优化设计,最后分析了利用NaNFlag开发数据处理算法的注意事项和应用场景。

        后续还会分享另外几个最近总结的软件优化知识点,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,上述例程使用的Demo工程,可以到笔者的主页查找和下载。


        版权声明:原创文章,转载和引用请注明出处和链接,侵权必究

这篇关于【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049365

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Qt 设置软件版本信息的实现

《Qt设置软件版本信息的实现》本文介绍了Qt项目中设置版本信息的三种常用方法,包括.pro文件和version.rc配置、CMakeLists.txt与version.h.in结合,具有一定的参考... 目录在运行程序期间设置版本信息可以参考VS在 QT 中设置软件版本信息的几种方法方法一:通过 .pro

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl