【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶

本文主要是介绍【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

前言

背景介绍

初始算法

优化算法

分析和应用

总结


前言

        见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》

        见《【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法》

背景介绍

        在一个嵌入式软件开发项目中,需要开发一个数据处理算法,功能是求解一个动态变化数组的平均值、极值和极值位号,并且具备动态剔除个别元素(元素序列不变)的功能。示例如下:

数组:2、4、6、8、10

剔除:第1个元素、第3个元素

求均值:(4 + 8 + 10)/ 3 = 7.3

求最小值:4

求最小值位号:2

求最大值:10

求最大值位号:5

初始算法

        一开始算法开发的思路非常简单,就是根据上述示例把求解过程拆分成两步,第一步构建剔除特定元素后的新数组,第二步分别求解统计结果,示例如下:

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;/* Model step function */
void untitled_step(void)
{real_T Array_min[5];real_T ArrayIndex;int32_T b_idx;int32_T b_k;int32_T e_k;int32_T i;/* MATLAB Function: '<Root>/MATLAB Function' incorporates:*  Constant: '<Root>/Constant'*/for (i = 0; i < 5; i++) {Array_min[i] = untitled_ConstP.Constant_Value[i];}Array_min[0] = 255.0;Array_min[2] = 255.0;untitled_Y.Out2 = 255.0;b_idx = 1;for (b_k = 1; b_k + 1 < 6; b_k++) {if (untitled_Y.Out2 > Array_min[b_k]) {untitled_Y.Out2 = Array_min[b_k];b_idx = b_k + 1;}}for (i = 0; i < 5; i++) {Array_min[i] = untitled_ConstP.Constant_Value[i];}Array_min[0] = 0.0;Array_min[2] = 0.0;untitled_Y.Out4 = 0.0;b_k = 1;for (i = 1; i + 1 < 6; i++) {if (untitled_Y.Out4 < Array_min[i]) {untitled_Y.Out4 = Array_min[i];b_k = i + 1;}}for (i = 0; i < 5; i++) {Array_min[i] = 0.0;}ArrayIndex = 0.0;for (i = 0; i < 5; i++) {if ((i + 1 != 1) && (i + 1 != 3)) {ArrayIndex++;Array_min[(int32_T)ArrayIndex - 1] = untitled_ConstP.Constant_Value[i];}}if (1.0 > ArrayIndex) {i = -1;} else {i = (int32_T)ArrayIndex - 1;}if ((int8_T)(i + 1) == 0) {ArrayIndex = 0.0;} else if ((int8_T)(i + 1) == 0) {ArrayIndex = 0.0;} else {ArrayIndex = Array_min[0];for (e_k = 2; e_k <= (int8_T)(i + 1); e_k++) {ArrayIndex += Array_min[e_k - 1];}}/* Outport: '<Root>/Out1' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out1 = ArrayIndex / (real_T)(int8_T)(i + 1);/* Outport: '<Root>/Out3' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out3 = b_idx;/* Outport: '<Root>/Out5' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out5 = b_k;
}/* Model initialize function */
void untitled_initialize(void)
{/* (no initialization code required) */
}/* Model terminate function */
void untitled_terminate(void)
{/* (no terminate code required) */
}

        上述代码仿真运行没有什么问题,从结果来看是符合功能需求的,示例如下:

        分析上述代码会发现构建新数组时存在一些问题。如果数组中出现大于255的值,或者小于0的负数时,算法就需要重新匹配。如果数组的Size大于5,或者剔除的个数大于2,算法也需要重新匹配。这种繁复的工作,是我们不希望看到的。

优化算法

        针对上述问题的分析和研究,发现Matlab官方提供了一个现成的函数功能,可用于剔除特定元素的数据统计算法,能让我们简化构建新数组的工作,也就免去繁复匹配算法的问题,示例如下:

        Tips:因为有NaN的存在,数组的数据类型如果不是double可能会出问题。例如NaN赋给uint8的数组是,对应元素就会变成0,再后续的求解函数中是按0对待的。

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;/* Model step function */
void untitled_step(void)
{real_T data[5];real_T y;int32_T c_k;int32_T i;int32_T k;boolean_T exitg1;/* MATLAB Function: '<Root>/MATLAB Function' incorporates:*  Constant: '<Root>/Constant'*/for (i = 0; i < 5; i++) {data[i] = untitled_ConstP.Constant_Value[i];}data[0] = (rtNaN);data[2] = (rtNaN);i = 0;k = 2;exitg1 = false;while ((!exitg1) && (k < 6)) {if (!rtIsNaN(data[k - 1])) {i = k;exitg1 = true;} else {k++;}}if (i == 0) {/* Outport: '<Root>/Out2' */untitled_Y.Out2 = (rtNaN);i = 1;} else {untitled_Y.Out2 = data[i - 1];for (k = i; k < 5; k++) {if (untitled_Y.Out2 > data[k]) {untitled_Y.Out2 = data[k];i = k + 1;}}}k = 0;c_k = 2;exitg1 = false;while ((!exitg1) && (c_k < 6)) {if (!rtIsNaN(data[c_k - 1])) {k = c_k;exitg1 = true;} else {c_k++;}}if (k == 0) {/* Outport: '<Root>/Out4' */untitled_Y.Out4 = (rtNaN);k = 1;} else {untitled_Y.Out4 = data[k - 1];for (c_k = k; c_k < 5; c_k++) {if (untitled_Y.Out4 < data[c_k]) {untitled_Y.Out4 = data[c_k];k = c_k + 1;}}}y = 0.0;c_k = 0;if (!rtIsNaN(data[1])) {y = data[1];c_k = 1;}if (!rtIsNaN(data[3])) {y += data[3];c_k++;}if (!rtIsNaN(data[4])) {y += data[4];c_k++;}/* Outport: '<Root>/Out1' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out1 = y / (real_T)c_k;/* Outport: '<Root>/Out3' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out3 = i;/* Outport: '<Root>/Out5' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out5 = k;
}/* Model initialize function */
void untitled_initialize(void)
{/* Registration code *//* initialize non-finites */rt_InitInfAndNaN(sizeof(real_T));
}/* Model terminate function */
void untitled_terminate(void)
{/* (no terminate code required) */
}

        Tips:从生成的C代码来看,底层逻辑的实现方法与前一种是类似的

        上述代码仿真运行也没有问题,结果符合需求,示例如下:

        分析上述算法的特点,不仅实现了项目中的需求,同时也利用NaNFlag为数据处理算法进行了降阶

分析和应用

        利用NaNFlag开发数据处理算法时,需要注意如下几点:

        1、两种算法生成的代码,底层逻辑都一样,但是是开发复杂度软件成熟度上差别好多,前者更适合用于逻辑探索和思维训练,后者跟适合于工程应用

        2、两种算法的开发自由度不同,可裁剪和压缩负载的空间也不同。前者可以根据实际应用裁剪出自己需要的数组大小,选取自己够用的数据类型,能更极致压缩算法对内存资源算力资源的消耗。后者是把一部分算法设计工作交给代码生成工具去做了,开发者就没有这么大的灵活度了。前者更适用于处理器资源有限的专用嵌入式项目,后者更实用于模块化平台化开发的项目。

总结

        以上就是本人在嵌入式软件开发中设计数据处理算法时,一些个人理解和分析的总结,首先介绍了它的背景情况,然后展示它的初始设计和优化设计,最后分析了利用NaNFlag开发数据处理算法的注意事项和应用场景。

        后续还会分享另外几个最近总结的软件优化知识点,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,上述例程使用的Demo工程,可以到笔者的主页查找和下载。


        版权声明:原创文章,转载和引用请注明出处和链接,侵权必究

这篇关于【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049365

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、