tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片

本文主要是介绍tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、DNN结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tf#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
batch_size=256
learning_rate=0.05x=tf.placeholder(tf.float32, [None, 784])
y=tf.placeholder(tf.float32, [None, 10])
is_train = tf.placeholder(tf.bool)  #BatchNorm 参数
keep_prob = tf.placeholder(tf.float32)   #dropout参数W_fc1 = tf.Variable(tf.truncated_normal(shape=[784, 1024], stddev=0.1), name="W_fc1")
b_fc1 = tf.Variable(tf.constant(0.01, shape=[1024]), name="b_fc1")W_fc2 = tf.Variable(tf.truncated_normal(shape=[1024, 512], stddev=0.1), name="W_fc2")
b_fc2 = tf.Variable(tf.constant(0.01, shape=[512]), name="b_fc2")W_fc3 = tf.Variable(tf.truncated_normal(shape=[512, 10], stddev=0.1), name="W_fc3")
b_fc3 = tf.Variable(tf.constant(0.01, shape=[10]), name="b_fc3")def minist_dnn(x, is_train, keep_prob, W_fc1, b_fc1, W_fc2, b_fc2):layer1 = tf.add(tf.matmul(x, W_fc1), b_fc1)layer1_bn = tf.layers.batch_normalization(layer1, training=is_train)  #BN层layer1_relu = tf.nn.relu(layer1_bn)#一般添加了BN层就不添加dropout,添加了dropout就不添加BN,这一层只使用dropoutlayer2 = tf.add(tf.matmul(layer1_relu, W_fc2), b_fc2)layer2_relu = tf.nn.relu(layer2)layer2_drop = tf.nn.dropout(layer2_relu, keep_prob)   #dropout层layer3 = tf.add(tf.matmul(layer2_drop, W_fc3), b_fc3)pred = tf.nn.softmax(layer3)return predpred = minist_dnn(x, is_train, keep_prob, W_fc1, b_fc1, W_fc2, b_fc2)
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred, 1e-8, 1)))
correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(pred,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/batch_size)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*batch_size: i*batch_size]batch_y = y_train_labels[(i-1)*batch_size: i*batch_size]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, is_train:True, keep_prob:0.5})entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], is_train:False, keep_prob:1})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

二、CNN结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tftf.reset_default_graph()  #清空计算图#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
batch_size=256
learning_rate=0.001x= tf.placeholder(tf.float32, [None, 784])  #x
y=tf.placeholder(tf.float32, [None, 10])  #y
keep_prob = tf.placeholder(tf.float32)   #用于空值dropout概率def mnist_cnn(x, keep_prob):x_image=tf.reshape(x, [-1,28,28,1])  #将数据变为28*28形状#第一层卷积with tf.variable_scope("conv_pool1"):W_conv1 = tf.get_variable("weights",[5,5,1,32], initializer = tf.truncated_normal_initializer(stddev=0.1))   #第一层卷积参数,fileter尺寸为5*5,输入通道为1,输出通道为32b_conv1 = tf.get_variable("bias",[32], initializer = tf.constant_initializer(0.01))   #第一层偏置项,输出的每一个通道通会加一个bias,总共加32个h_conv1=tf.nn.conv2d(x_image, filter= W_conv1, strides=[1,1,1,1], padding="SAME")   #第一层卷积,stride为移动步长h_conv1_relu = tf.nn.relu(h_conv1+b_conv1)  #激活函数,注意tf.nn.conv2d不带激活函数,tf.layers.conv2d参数可以指定激活函数h_pooling1 = tf.nn.max_pool(h_conv1_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  #ksize为pooling核大小,pooling后变为(?, 14, 14, 32)#第二层卷积with tf.variable_scope("conv_pool2"):W_conv2 = tf.get_variable("weights",[5,5,32,64], initializer = tf.truncated_normal_initializer(stddev=0.1))   #第一层卷积参数,fileter尺寸为5*5,输入通道为1,输出通道为32b_conv2 = tf.get_variable("bias",[64], initializer = tf.constant_initializer(0.01))   #第一层偏置项,输出的每一个通道通会加一个bias,总共加32个h_conv2=tf.nn.conv2d(h_pooling1, filter= W_conv2, strides=[1,1,1,1], padding="SAME")   #第一层卷积,stride为移动步长h_conv2_relu = tf.nn.relu(h_conv2+b_conv2)  #激活函数,注意tf.nn.conv2d不带激活函数,tf.layers.conv2d参数可以指定激活函数h_pooling2 = tf.nn.max_pool(h_conv2_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  #ksize为pooling核大小,pooling后变为(?, 14, 14, 32)pool_shape = h_pooling2.get_shape().as_list()   #获得h_pooling2的维度,为[batch_size, wide, height, channel]h_pooling2_flat = tf.reshape(h_pooling2, [-1, pool_shape[1]*pool_shape[2]*pool_shape[3]])  #对pooling2一维展开#全连接with tf.variable_scope("fc1"):W_fc1 = tf.get_variable("weights",[pool_shape[1]*pool_shape[2]*pool_shape[3], 1024], initializer = tf.truncated_normal_initializer(stddev=0.1))   #全连接层权重,因为经过两层pooling,图片由28*28变为14*14,再变为7*7, 所以输入神经元为7*7*64b_fc1 = tf.get_variable("bias",[1024], initializer = tf.constant_initializer(0.01))   #h_pooling2 = tf.layers.flatten(h_pooling2)  #对pooling2一维展开fc1 = tf.add(tf.matmul(h_pooling2_flat, W_fc1), b_fc1) #第一层全连接fc1_relu = tf.nn.relu(fc1)fc1_drop = tf.nn.dropout(fc1_relu, keep_prob)   #dropout层#输出层with tf.variable_scope("output"):W_fc2 = tf.get_variable("weights",[1024, 10], initializer = tf.truncated_normal_initializer(stddev=0.1))    #全连接层权重,因为最终判断为10维,所以最终神经元为10个b_fc2 = tf.get_variable("bias",[10], initializer = tf.constant_initializer(0.01)) output = tf.add(tf.matmul(fc1_drop, W_fc2), b_fc2)   #第二层全连接pred = tf.nn.softmax(output)return predpred = mnist_cnn(x, keep_prob)  #带入函数
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred,1e-11,1.0)))
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))   #判断预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))     #准确率#可以加正则化损失
#loss = loss+ 0.001*tf.nn.l2_loss(W_fc1)
#optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)  #用梯度下降求解
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())
#saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())#with tf.Session() as sess:
#    print(accuracy)path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/batch_size)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*batch_size: i*batch_size]batch_y = y_train_labels[(i-1)*batch_size: i*batch_size]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, keep_prob:0.5})#saver.save(sess, 'D:/data/mnist/cnn_mnist.module', global_step=step)  #保存模型entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], keep_prob:1})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

三、LSTM结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tftf.reset_default_graph()  #清空计算图#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
learning_rate=0.05
timestep=28   #特征序列长度,对应隐藏层ht个数
num_input=28   #特征维度,共28维。图像每一行可以看做一个维度特征,共28维
lstm_hidden_size=64  #lstm隐藏层神经元个数
num_of_layers = 2  #lstm的层数x= tf.placeholder(tf.float32, [None, 784])  #x
y=tf.placeholder(tf.float32, [None, 10])  #y
lstm_keep_prob = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32)   #用于空值dropout概率
batch_size = tf.placeholder(tf.int32, [])   #一个批次数据,训练集是使用256,预测时使用1000,[]表示是一个Scalardef mnist_lstm(x, lstm_keep_prob, keep_prob, batch_size):x_image = tf.reshape(x, [-1,timestep, num_input])  #将数据序列长度*特征维度with tf.variable_scope("lstmlayer"):#创建lstm结构,ht神经元个数为64,,可推测出,一个门的参数个数为64*(64+28)+64, (64+28)表示ht-1与xt拼接的维度#为lstm创建dropout,有两个参数,训练时,input_keep_prob,一般设置为1,out_keep_prob一般设置为0.5#创建num_of_layers层lstm,不能用[lstm]*N,否则每层lstm参数会共享#注意lstm,dropout和多层MultiRNNCell必须放在一起调用,否则会出现维度错误stacked_lstm = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(lstm_hidden_size), input_keep_prob=1, output_keep_prob =lstm_keep_prob ) for _ in range(num_of_layers)]) init_state = stacked_lstm.zero_state(batch_size, dtype=tf.float32)#计算前项lstm层的输出, 两个输出,一个记录ht,一个记录ctlstm_outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x_image, initial_state=init_state, dtype=tf.float32)#我们支取最后一个输出状态ht进行下一步的预测lstm_output = lstm_outputs[:,-1,:]with tf.variable_scope("fc1"):W_fc1 = tf.get_variable('weight', shape=[lstm_hidden_size, 10], initializer = tf.truncated_normal_initializer(stddev=0.1), dtype=tf.float32)b_fc1 = tf.get_variable('bias', shape=[10], initializer = tf.constant_initializer(0.1), dtype=tf.float32)output = tf.add(tf.matmul(lstm_output, W_fc1), b_fc1) #第一层全连接pred = tf.nn.softmax(output)return predpred = mnist_lstm(x, lstm_keep_prob, keep_prob, batch_size)  #带入函数
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred,1e-11,1.0)))
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))   #判断预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))     #准确率#可以加正则化损失
#loss = loss+ 0.001*tf.nn.l2_loss(W_fc1)
#optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)  #用梯度下降求解
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
#saver = tf.train.Saver(tf.global_variables())path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/256)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*256: i*256]batch_y = y_train_labels[(i-1)*256: i*256]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, lstm_keep_prob:0.5, keep_prob:0.5, batch_size:256})#saver.save(sess, 'D:/data/mnist/cnn_mnist.module', global_step=step)  #保存模型entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], lstm_keep_prob:1, keep_prob:1, batch_size:1000})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

这篇关于tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048741

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal