tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片

本文主要是介绍tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、DNN结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tf#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
batch_size=256
learning_rate=0.05x=tf.placeholder(tf.float32, [None, 784])
y=tf.placeholder(tf.float32, [None, 10])
is_train = tf.placeholder(tf.bool)  #BatchNorm 参数
keep_prob = tf.placeholder(tf.float32)   #dropout参数W_fc1 = tf.Variable(tf.truncated_normal(shape=[784, 1024], stddev=0.1), name="W_fc1")
b_fc1 = tf.Variable(tf.constant(0.01, shape=[1024]), name="b_fc1")W_fc2 = tf.Variable(tf.truncated_normal(shape=[1024, 512], stddev=0.1), name="W_fc2")
b_fc2 = tf.Variable(tf.constant(0.01, shape=[512]), name="b_fc2")W_fc3 = tf.Variable(tf.truncated_normal(shape=[512, 10], stddev=0.1), name="W_fc3")
b_fc3 = tf.Variable(tf.constant(0.01, shape=[10]), name="b_fc3")def minist_dnn(x, is_train, keep_prob, W_fc1, b_fc1, W_fc2, b_fc2):layer1 = tf.add(tf.matmul(x, W_fc1), b_fc1)layer1_bn = tf.layers.batch_normalization(layer1, training=is_train)  #BN层layer1_relu = tf.nn.relu(layer1_bn)#一般添加了BN层就不添加dropout,添加了dropout就不添加BN,这一层只使用dropoutlayer2 = tf.add(tf.matmul(layer1_relu, W_fc2), b_fc2)layer2_relu = tf.nn.relu(layer2)layer2_drop = tf.nn.dropout(layer2_relu, keep_prob)   #dropout层layer3 = tf.add(tf.matmul(layer2_drop, W_fc3), b_fc3)pred = tf.nn.softmax(layer3)return predpred = minist_dnn(x, is_train, keep_prob, W_fc1, b_fc1, W_fc2, b_fc2)
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred, 1e-8, 1)))
correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(pred,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/batch_size)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*batch_size: i*batch_size]batch_y = y_train_labels[(i-1)*batch_size: i*batch_size]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, is_train:True, keep_prob:0.5})entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], is_train:False, keep_prob:1})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

二、CNN结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tftf.reset_default_graph()  #清空计算图#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
batch_size=256
learning_rate=0.001x= tf.placeholder(tf.float32, [None, 784])  #x
y=tf.placeholder(tf.float32, [None, 10])  #y
keep_prob = tf.placeholder(tf.float32)   #用于空值dropout概率def mnist_cnn(x, keep_prob):x_image=tf.reshape(x, [-1,28,28,1])  #将数据变为28*28形状#第一层卷积with tf.variable_scope("conv_pool1"):W_conv1 = tf.get_variable("weights",[5,5,1,32], initializer = tf.truncated_normal_initializer(stddev=0.1))   #第一层卷积参数,fileter尺寸为5*5,输入通道为1,输出通道为32b_conv1 = tf.get_variable("bias",[32], initializer = tf.constant_initializer(0.01))   #第一层偏置项,输出的每一个通道通会加一个bias,总共加32个h_conv1=tf.nn.conv2d(x_image, filter= W_conv1, strides=[1,1,1,1], padding="SAME")   #第一层卷积,stride为移动步长h_conv1_relu = tf.nn.relu(h_conv1+b_conv1)  #激活函数,注意tf.nn.conv2d不带激活函数,tf.layers.conv2d参数可以指定激活函数h_pooling1 = tf.nn.max_pool(h_conv1_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  #ksize为pooling核大小,pooling后变为(?, 14, 14, 32)#第二层卷积with tf.variable_scope("conv_pool2"):W_conv2 = tf.get_variable("weights",[5,5,32,64], initializer = tf.truncated_normal_initializer(stddev=0.1))   #第一层卷积参数,fileter尺寸为5*5,输入通道为1,输出通道为32b_conv2 = tf.get_variable("bias",[64], initializer = tf.constant_initializer(0.01))   #第一层偏置项,输出的每一个通道通会加一个bias,总共加32个h_conv2=tf.nn.conv2d(h_pooling1, filter= W_conv2, strides=[1,1,1,1], padding="SAME")   #第一层卷积,stride为移动步长h_conv2_relu = tf.nn.relu(h_conv2+b_conv2)  #激活函数,注意tf.nn.conv2d不带激活函数,tf.layers.conv2d参数可以指定激活函数h_pooling2 = tf.nn.max_pool(h_conv2_relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  #ksize为pooling核大小,pooling后变为(?, 14, 14, 32)pool_shape = h_pooling2.get_shape().as_list()   #获得h_pooling2的维度,为[batch_size, wide, height, channel]h_pooling2_flat = tf.reshape(h_pooling2, [-1, pool_shape[1]*pool_shape[2]*pool_shape[3]])  #对pooling2一维展开#全连接with tf.variable_scope("fc1"):W_fc1 = tf.get_variable("weights",[pool_shape[1]*pool_shape[2]*pool_shape[3], 1024], initializer = tf.truncated_normal_initializer(stddev=0.1))   #全连接层权重,因为经过两层pooling,图片由28*28变为14*14,再变为7*7, 所以输入神经元为7*7*64b_fc1 = tf.get_variable("bias",[1024], initializer = tf.constant_initializer(0.01))   #h_pooling2 = tf.layers.flatten(h_pooling2)  #对pooling2一维展开fc1 = tf.add(tf.matmul(h_pooling2_flat, W_fc1), b_fc1) #第一层全连接fc1_relu = tf.nn.relu(fc1)fc1_drop = tf.nn.dropout(fc1_relu, keep_prob)   #dropout层#输出层with tf.variable_scope("output"):W_fc2 = tf.get_variable("weights",[1024, 10], initializer = tf.truncated_normal_initializer(stddev=0.1))    #全连接层权重,因为最终判断为10维,所以最终神经元为10个b_fc2 = tf.get_variable("bias",[10], initializer = tf.constant_initializer(0.01)) output = tf.add(tf.matmul(fc1_drop, W_fc2), b_fc2)   #第二层全连接pred = tf.nn.softmax(output)return predpred = mnist_cnn(x, keep_prob)  #带入函数
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred,1e-11,1.0)))
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))   #判断预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))     #准确率#可以加正则化损失
#loss = loss+ 0.001*tf.nn.l2_loss(W_fc1)
#optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)  #用梯度下降求解
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())
#saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables())#with tf.Session() as sess:
#    print(accuracy)path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/batch_size)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*batch_size: i*batch_size]batch_y = y_train_labels[(i-1)*batch_size: i*batch_size]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, keep_prob:0.5})#saver.save(sess, 'D:/data/mnist/cnn_mnist.module', global_step=step)  #保存模型entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], keep_prob:1})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

三、LSTM结构实现mnist手写数字图片
import os
import struct
import numpy as np
import tensorflow as tftf.reset_default_graph()  #清空计算图#数据加载函数
def load_mnist(path, kind='train'):"""load mnist dateArgs:path: date pathkind: train or testReturns:images and labels"""labels_path = os.path.join(path,'%s-labels.idx1-ubyte'% kind)   #标签数据images_path = os.path.join(path,'%s-images.idx3-ubyte'% kind)   #图像数据with open(labels_path, 'rb') as lbpath:magic, n = struct.unpack('>II',lbpath.read(8))labels = np.fromfile(lbpath,dtype=np.uint8)with open(images_path, 'rb') as imgpath:magic, num, rows, cols = struct.unpack('>IIII',imgpath.read(16))images = np.fromfile(imgpath,dtype=np.uint8).reshape(len(labels), 784)return images, labels#将label进行one-hot处理
def y_onehot(y):"""one-hot optionArgs:y: labelsReturns:one-hot labeleg:1->[0,1,0,0,0,0,0,0,0]"""n_class = 10y_labels = np.eye(n_class)[y]return y_labels#超参
Epoch=100
learning_rate=0.05
timestep=28   #特征序列长度,对应隐藏层ht个数
num_input=28   #特征维度,共28维。图像每一行可以看做一个维度特征,共28维
lstm_hidden_size=64  #lstm隐藏层神经元个数
num_of_layers = 2  #lstm的层数x= tf.placeholder(tf.float32, [None, 784])  #x
y=tf.placeholder(tf.float32, [None, 10])  #y
lstm_keep_prob = tf.placeholder(tf.float32)
keep_prob = tf.placeholder(tf.float32)   #用于空值dropout概率
batch_size = tf.placeholder(tf.int32, [])   #一个批次数据,训练集是使用256,预测时使用1000,[]表示是一个Scalardef mnist_lstm(x, lstm_keep_prob, keep_prob, batch_size):x_image = tf.reshape(x, [-1,timestep, num_input])  #将数据序列长度*特征维度with tf.variable_scope("lstmlayer"):#创建lstm结构,ht神经元个数为64,,可推测出,一个门的参数个数为64*(64+28)+64, (64+28)表示ht-1与xt拼接的维度#为lstm创建dropout,有两个参数,训练时,input_keep_prob,一般设置为1,out_keep_prob一般设置为0.5#创建num_of_layers层lstm,不能用[lstm]*N,否则每层lstm参数会共享#注意lstm,dropout和多层MultiRNNCell必须放在一起调用,否则会出现维度错误stacked_lstm = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(lstm_hidden_size), input_keep_prob=1, output_keep_prob =lstm_keep_prob ) for _ in range(num_of_layers)]) init_state = stacked_lstm.zero_state(batch_size, dtype=tf.float32)#计算前项lstm层的输出, 两个输出,一个记录ht,一个记录ctlstm_outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x_image, initial_state=init_state, dtype=tf.float32)#我们支取最后一个输出状态ht进行下一步的预测lstm_output = lstm_outputs[:,-1,:]with tf.variable_scope("fc1"):W_fc1 = tf.get_variable('weight', shape=[lstm_hidden_size, 10], initializer = tf.truncated_normal_initializer(stddev=0.1), dtype=tf.float32)b_fc1 = tf.get_variable('bias', shape=[10], initializer = tf.constant_initializer(0.1), dtype=tf.float32)output = tf.add(tf.matmul(lstm_output, W_fc1), b_fc1) #第一层全连接pred = tf.nn.softmax(output)return predpred = mnist_lstm(x, lstm_keep_prob, keep_prob, batch_size)  #带入函数
loss = -tf.reduce_mean(y*tf.log(tf.clip_by_value(pred,1e-11,1.0)))
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))   #判断预测准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))     #准确率#可以加正则化损失
#loss = loss+ 0.001*tf.nn.l2_loss(W_fc1)
#optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)  #用梯度下降求解
train_op=optimizer.minimize(loss)init = tf.global_variables_initializer()
#saver = tf.train.Saver(tf.global_variables())path = 'D:/data/mnist/'
X_train, y_train = load_mnist(path, kind='train')    #训练集
y_train_labels = y_onehot(y_train)with tf.Session() as sess:sess.run(init)total_batch = int(len(X_train)/256)for step in range(Epoch):for i in range(1,total_batch):batch_x = X_train[(i-1)*256: i*256]batch_y = y_train_labels[(i-1)*256: i*256]sess.run(train_op,feed_dict={x:batch_x, y:batch_y, lstm_keep_prob:0.5, keep_prob:0.5, batch_size:256})#saver.save(sess, 'D:/data/mnist/cnn_mnist.module', global_step=step)  #保存模型entropy ,acc = sess.run([loss, accuracy], feed_dict={x:X_train[0:1000], y:y_train_labels[0:1000], lstm_keep_prob:1, keep_prob:1, batch_size:1000})print('step{} loss=============>:{:.4f},   auc===========> {:.4f}'.format(step, entropy, acc) )print ("Optimization Finished!")

在这里插入图片描述

这篇关于tensorflow使用DNN、CNN、RNN(lstm)分别实现识别mnist手写数字图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048741

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义