归并排序的递归与非递归实现

2024-06-10 15:52

本文主要是介绍归并排序的递归与非递归实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

递归实现

归并排序有点类似于二叉树的后序遍历,是一种基于分治思想的排序算法。具体过程如下:

但要注意,在归并时要额外开辟一个与原数组同等大小的空间用来存储每次归并排序后的值,然后再拷贝到原数组中。

代码实现:

#include<stdlib.h>
#include<string.h>// 归并排序递归实现
void _MergeSort(int* a, int* tmp, int left, int right)
{//当区间只有一个值或没有值时,返回if (left >= right){return;}int mid = (left + right) / 2;//递归左右区间_MergeSort(a, tmp, left, mid);_MergeSort(a, tmp, mid + 1, right);//归并int begin1 = left, end1 = mid;int begin2 = mid + 1, end2 = right;int i = left;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}void MergeSort(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//实现归并的函数_MergeSort(a, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

非递归实现

在实现快排时,我们用栈来实现非递归,但归并排序时,我们用栈来实现似乎有些麻烦。快排在递归到底时,就已经数组排为有序,但层序遍历不行,层序遍历在递归至最底层时才开始排序,如果要用栈来实现,就需要用两个栈来存储,且过程很麻烦。

因此,在这里我们采用循环的方式来实现层序遍历的非递归。先来看具体过程:

根据上图我们可以得到代码:(但这个代码只能实现2的次方倍的数组个数的排序,其它的会出现数组越界的问题)

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//归并int gap = 1;//gap为归并的每组数据的个数while (gap < n){//i控制每次归并的起始位置的下标for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap = 2 * gap;}free(tmp);tmp = NULL;
}

要想实现数组归并排序的非递归,我们还要再继续解决数组越界的问题。

先来看越界情况的分析:

代码实现:

// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//归并int gap = 1;//gap为归并的每组数据的个数while (gap < n){//i控制每次归并的起始位置的下标for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;//结束循环if (begin2 >= n){break;}//修正end2if (end2 >= n){end2 = n - 1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap = 2 * gap;}free(tmp);tmp = NULL;
}

完整代码

#include<stdio.h>
#include<stdlib.h>
#include<string.h>void Print(int* arr, int n)
{for (int i = 0; i < n; i++){printf("%d ", arr[i]);}printf("\n");
}// 归并排序递归实现
void _MergeSort(int* a, int* tmp, int left, int right)
{//当区间只有一个值或没有值时,返回if (left >= right){return;}int mid = (left + right) / 2;//递归左右区间_MergeSort(a, tmp, left, mid);_MergeSort(a, tmp, mid + 1, right);//归并int begin1 = left, end1 = mid;int begin2 = mid + 1, end2 = right;int i = left;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}void MergeSort(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//实现归并的函数_MergeSort(a, tmp, 0, n - 1);free(tmp);tmp = NULL;
}// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{//开辟与a同等大小的空间int* tmp = (int*)malloc(sizeof(int) * n);//归并int gap = 1;//gap为归并的每组数据的个数while (gap < n){//i控制每次归并的起始位置的下标for (int i = 0; i < n; i += 2 * gap){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;int j = i;//结束循环if (begin2 >= n){break;}//修正end2if (end2 >= n){end2 = n - 1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//将数据拷贝到原数组中memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap = 2 * gap;}free(tmp);tmp = NULL;
}int main()
{int arr[] = { 6,5,7,9,2,0,3,1,8,4,10 };int len = sizeof(arr) / sizeof(int);MergeSortNonR(arr, len);Print(arr, len);return 0;
}

这篇关于归并排序的递归与非递归实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048603

相关文章

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

详解Java中三种状态机实现方式来优雅消灭 if-else 嵌套

《详解Java中三种状态机实现方式来优雅消灭if-else嵌套》这篇文章主要为大家详细介绍了Java中三种状态机实现方式从而优雅消灭if-else嵌套,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录1. 前言2. 复现传统if-else实现的业务场景问题3. 用状态机模式改造3.1 定义状态接口3

基于Python实现温度单位转换器(新手版)

《基于Python实现温度单位转换器(新手版)》这篇文章主要为大家详细介绍了如何基于Python实现温度单位转换器,主要是将摄氏温度(C)和华氏温度(F)相互转换,下面小编就来和大家简单介绍一下吧... 目录为什么选择温度转换器作为第一个项目项目概述所需基础知识实现步骤详解1. 温度转换公式2. 用户输入处

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制

SpringBoot集成P6Spy的实现示例

《SpringBoot集成P6Spy的实现示例》本文主要介绍了SpringBoot集成P6Spy的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录本节目标P6Spy简介抛出问题集成P6Spy1. SpringBoot三板斧之加入依赖2. 修改

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

Redis分布式锁中Redission底层实现方式

《Redis分布式锁中Redission底层实现方式》Redission基于Redis原子操作和Lua脚本实现分布式锁,通过SETNX命令、看门狗续期、可重入机制及异常处理,确保锁的可靠性和一致性,是... 目录Redis分布式锁中Redission底层实现一、Redission分布式锁的基本使用二、Red

基于Python实现数字限制在指定范围内的五种方式

《基于Python实现数字限制在指定范围内的五种方式》在编程中,数字范围限制是常见需求,无论是游戏开发中的角色属性值、金融计算中的利率调整,还是传感器数据处理中的异常值过滤,都需要将数字控制在合理范围... 目录引言一、基础条件判断法二、数学运算巧解法三、装饰器模式法四、自定义类封装法五、NumPy数组处理