使用DPO微调大模型Qwen2详解

2024-06-10 15:04

本文主要是介绍使用DPO微调大模型Qwen2详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

基于人类反馈的强化学习 (Reinforcement Learning from Human Feedback,RLHF) 事实上已成为 GPT-4 或 Claude 等 LLM 训练的最后一步,它可以确保语言模型的输出符合人类在闲聊或安全性等方面的期望。但传统的RLHF比较复杂,且还需要奖励模型,故DPO方法被提出,其将现有方法使用的基于强化学习的目标转换为可以通过简单的二元交叉熵损失直接优化的目标,这一做法大大简化了 LLM 的提纯过程。
且huggingface的trl库已经集成了dpo,使用起来非常方便。

本次以QWEN2(蹭热点),为例进行训练,分别介绍单轮对话的DPO多轮对话的DPO,对应的数据集分别如下(均在huggingface):

  • 单轮:lvwerra/stack-exchange-paired
  • 多轮:trl-internal-testing/hh-rlhf-helpful-base-trl-style

通过DPO微调模型大概可以简单的分为两个步骤:
1、将数据处理成所需格式。
2、使用DPOTrainer进行训练

两种形式的dpo代码已集成至github上的大模型训练框架,并做了详细的使用解释及代码位置说明,可见:https://github.com/mst272/LLM-Dojo/tree/main/train_args/dpo

项目包括一个每个人都可以以此为基础构建自己的开源大模型训练框架流程、支持主流模型使用deepspeed进行Lora、Qlora、DPO等训练、主流模型的chat template模版、以及一些tricks的从零实现模块。欢迎大家star 共同学习!:

单轮对话构建DpoDataset

标准的DpoDataset数据集,最终的数据集对象应包含这3个条目。条目应命名为:

  • prompt
  • chosen
  • rejected

官方示例

单轮官方示例如下:

dpo_dataset_dict = {"prompt": ["hello","how are you","What is your name?","What is your name?","Which is the best programming language?","Which is the best programming language?","Which is the best programming language?",],"chosen": ["hi nice to meet you","I am fine","My name is Mary","My name is Mary","Python","Python","Java",],"rejected": ["leave me alone","I am not fine","Whats it to you?","I dont have a name","Javascript","C++","C++",],
}

多轮示例为上述提到的数据集,大家可以大概看一下是长这个样子:
在这里插入图片描述

从头开始构建

比较简单的方式是套用官方给的示例,如下所示,只需要将数据集映射为上述我们提到的prompt、chosen、rejected格式,此时传递给DPOTrainer的数据是未编码之前的,DPOTrainer中会自动的给我们进行编码。注意下面并没有添加对应模型的chat template,根据不同模型的template可以在return_prompt_and_responses中自行添加即可。

def return_prompt_and_responses(samples) -> Dict[str, str, str]:return {"prompt": ["Question: " + question + "\n\nAnswer: "for question in samples["question"]],"chosen": samples["response_j"], # rated better than k"rejected": samples["response_k"], # rated worse than j}dataset = load_dataset("lvwerra/stack-exchange-paired",split="train",data_dir="data/rl"
)
original_columns = dataset.column_namesdataset.map(return_prompt_and_responses,batched=True,remove_columns=original_columns
)dpo_trainer = DPOTrainer(model, # 经 SFT 的基础模型model_ref, # 一般为经 SFT 的基础模型的一个拷贝beta=0.1, # DPO 的温度超参train_dataset=dataset, # 上文准备好的数据集tokenizer=tokenizer, # 分词器args=training_args, # 训练参数,如: batch size, 学习率等
)

为了便于我们理解数据处理细节及进行一些魔改操作,我们可以从头自己构建一个DpoDataset。
首先,深入DPOTrainer源码可以看到其数据处理操作主要是在tokenize_row函数,如下所示,
在这里插入图片描述
最终返回的是一个batch字典字段,代码部分如下所示:
在这里插入图片描述
在这里插入图片描述
最终返回的字段为:

dict(prompt_input_ids,prompt_attention_mask,chosen_input_ids,chosen_attention_mask,chosen_labels,rejected_input_ids,rejected_attention_mask,rejected_labels,)

主要的__getitem__代码如下所示:

    def __getitem__(self, item):data = self.data_list[item]data = json.loads(data)  # 将json格式转换为python字典prompt =  data['prompt']chosen = data['chosen']rejected = data['rejected']# 对prompt进行编码prompt = self.user_format.format(content=prompt, stop_token=self.tokenizer.eos_token)if self.system_format is not None:system = self.systemif system is not None:system_text = self.system_format.format(content=system)input_ids = self.tokenizer.encode(system_text, add_special_tokens=False)prompt_input_ids = input_ids + self.tokenizer.encode(prompt, add_special_tokens=False)else:prompt_input_ids = self.tokenizer.encode(prompt, add_special_tokens=False)# 进行回答的input id编码chosen = self.assistant_format.format(content=chosen, stop_token=self.tokenizer.eos_token)rejected = self.assistant_format.format(content=rejected, stop_token=self.tokenizer.eos_token)chosen_input_ids = self.tokenizer.encode(chosen, add_special_tokens=False)rejected_input_ids = self.tokenizer.encode(rejected, add_special_tokens=False)# 对最大长度进行截断longer_response_length = max(len(chosen_input_ids), len(rejected_input_ids))# keep end 对prompt截断if len(prompt_input_ids) + longer_response_length > self.max_seq_length:max_prompt_length = max(self.max_prompt_length, self.max_seq_length - longer_response_length)prompt_input_ids = prompt_input_ids[-max_prompt_length:]# 如果还不符合则回答截断if len(prompt_input_ids) + longer_response_length > self.max_seq_length:chosen_input_ids = chosen_input_ids[: self.max_seq_length - len(prompt_input_ids)]rejected_input_ids = rejected_input_ids[: self.max_seq_length - len(prompt_input_ids)]chosen_labels = [-100] * len(prompt_input_ids) + chosen_input_idschosen_input_ids = prompt_input_ids + chosen_input_idsrejected_labels = [-100] * len(prompt_input_ids) + rejected_input_idsrejected_input_ids = prompt_input_ids + rejected_input_idsassert len(chosen_labels) == len(chosen_input_ids)assert len(rejected_labels) == len(rejected_input_ids)inputs = dict(prompt_input_ids=prompt_input_ids,prompt_attention_mask=[1] * len(prompt_input_ids),chosen_input_ids=chosen_input_ids,chosen_attention_mask=[1] * len(chosen_input_ids),chosen_labels=chosen_labels,rejected_input_ids=rejected_input_ids,rejected_attention_mask=[1] * len(rejected_input_ids),rejected_labels=rejected_labels,)return inputs

适配DPOTrainer

构建完dataset后要适配DPOTrainer,可以看到其需要使用dataset进行一个map操作,这也就是DPOTrainer自动给我们处理数据的入口。
在这里插入图片描述
在我们自建的Dataset类中添加一个map函数映射会self即可:

    def map(self, func, **kwargs):return self

多轮对话构建DpoDataset

多轮对话构建我们这里就不自己去写了,直接采用DPOTrainer中自带的数据处理即可。
部分代码如下所示:

        if tokenizer.chat_template is None:tokenizer.chat_template = "{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\n\n'}}{% endfor %}{{ eos_token }}"train_dataset = load_dataset(data_files=args.train_data_path, path='json')def process(row):row["chosen"] = tokenizer.apply_chat_template(row["chosen"], tokenize=False)row["rejected"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False)return rowtrain_dataset = train_dataset.map(process)train_dataset = train_dataset['train']return train_dataset

完整代码集成至github项目中,具体可参见:

开始Qwen2-8B 多轮和单轮DPO训练

使用DPOTrainer即可开始训练

trainer = DPOTrainer(model,ref_model=None,args=train_args,train_dataset=train_dataset,tokenizer=tokenizer,peft_config=peft_config)
dpo_trainer.train()
dpo_trainer.save_model()

总结

两种形式的dpo代码已集成至github上的大模型训练框架,并做了详细的使用解释及代码位置说明,可见:https://github.com/mst272/LLM-Dojo/tree/main/train_args/dpo

这篇关于使用DPO微调大模型Qwen2详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048500

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF