Langchain的向量存储 - Document示例代码里的疑问

2024-06-10 10:04

本文主要是介绍Langchain的向量存储 - Document示例代码里的疑问,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、语句分析
  • 二、 举例解释
  • 三、 完整代码
  • 总结


前言

之前的代码里有下面这句话,可能有看不明白的读者。

vectors = [embeddings.embed(doc.page_content) for doc in docs]

今天一起来看下这句话。

一、语句分析

这句话实际上是一个列表推导式,它的作用是遍历 docs 列表中的每个 Document 对象,并将每个 Document 对象的 page_content 属性通过 embeddings.embed 方法转换为向量,然后将所有这些向量组成一个新的列表 vectors

具体的步骤如下:

  1. 遍历 docs 列表for doc in docs 表示依次取出 docs 列表中的每个 Document 对象并赋值给 doc
  2. 提取 page_content:对于每个 Document 对象 doc,提取其 page_content 属性(即文档的文本内容)。
  3. 嵌入转换:将提取到的文本内容通过 embeddings.embed 方法转换为向量。embeddings.embed(doc.page_content) 返回的是一个向量表示。
  4. 生成向量列表:将所有转换得到的向量组成一个新的列表,并将该列表赋值给 vectors 变量。

这句话不会替换原来的 doc 值,而是生成一个新的向量列表。每个向量对应于 docs 列表中每个 Document 对象的 page_content 的向量表示。

二、 举例解释

假设我们有以下 docs 列表:

docs = [Document(page_content="Machine learning is a method of data analysis.", metadata={"title": "ML Intro"}),Document(page_content="LangChain is a powerful framework.", metadata={"title": "LangChain Overview"})
]

执行这句代码后:

vectors = [embeddings.embed(doc.page_content) for doc in docs]

假设 embeddings.embed 方法将文本转换为一个简单的数值向量,那么 vectors 可能是:

vectors = [[0.1, 0.2, 0.3, 0.4],  # 向量表示 "Machine learning is a method of data analysis."[0.5, 0.6, 0.7, 0.8]   # 向量表示 "LangChain is a powerful framework."
]

三、 完整代码

以下是一个完整的示例,展示了从文档到向量转换的过程,大家可以一起练一练:

from langchain_core.documents import Document
from langchain.embeddings import OpenAIEmbeddings# 创建文档对象列表
docs = [Document(page_content="Machine learning is a method of data analysis.", metadata={"title": "ML Intro"}),Document(page_content="LangChain is a powerful framework.", metadata={"title": "LangChain Overview"})
]# 初始化嵌入模型
embeddings = OpenAIEmbeddings()# 将文档内容转换为向量
vectors = [embeddings.embed(doc.page_content) for doc in docs]# 输出向量列表
for i, vector in enumerate(vectors):print(f"Vector for doc {i+1}: {vector}")

总结

这句话的主要目的是将每个 Document 对象的文本内容转换为向量,并将所有这些向量组成一个新的列表 vectors,方便后续的向量存储和检索操作。它不会修改原来的 Document 对象,而是生成一个新的向量列表。

这篇关于Langchain的向量存储 - Document示例代码里的疑问的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047851

相关文章

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS