【python】OpenCV—Histogram Matching(9.2)

2024-06-10 09:52

本文主要是介绍【python】OpenCV—Histogram Matching(9.2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

学习来自OpenCV基础(17)基于OpenCV、scikit-image和Python的直方图匹配

文章目录

  • 直方图匹配介绍
  • scikit-image 中的直方图匹配
  • 小试牛刀
  • 风格迁移

直方图匹配介绍

直方图匹配(Histogram Matching)是一种图像处理技术,旨在将一张图像的像素值分布调整到与另一张图像的像素值分布相匹配。这种技术在图像增强、颜色校正等任务中非常有用。以下是关于直方图匹配的详细解释:

在这里插入图片描述

一、定义与原理

定义: 直方图匹配又称为直方图规定化,是一种通过调整图像的像素值分布,使两张图像的直方图尽可能相似的图像增强方法。

原理: 基于直方图变换,通过调整图像的像素值,使得两张图像的直方图在形状和分布上尽可能一致。这通常涉及到将输入图像的像素值映射到输出图像的像素值,以实现两者之间的分布匹配

二、一般步骤

计算累积分布函数(CDF): 首先,计算原始图像和目标图像的直方图的累积分布函数(CDF)。CDF表示了从最小值到当前值的像素数占总像素数的比例。

像素值映射: 根据累积分布函数的关系,将原始图像的像素值映射到目标直方图的像素值。这个映射过程是直方图匹配的关键步骤。

应用映射函数: 对原始图像的所有像素应用映射函数,得到匹配后的图像。

三、数学表示

假设我们有一个输入图像 I I I 和一个目标图像 T T T,我们希望将输入图像的像素值映射到输出图像的像素值。这可以表示为:

O ( x , y ) = round ( T I ⋅ I ( x , y ) ) O(x, y) = \text{round}\left(\frac{T}{I} \cdot I(x, y)\right) O(x,y)=round(ITI(x,y))

其中, O ( x , y ) O(x, y) O(x,y) 是输出图像中的像素值, I ( x , y ) I(x, y) I(x,y) 是输入图像中的像素值, T T T 是目标图像的像素值范围。函数 round \text{round} round 将结果四舍五入到最近的整数。

四、应用场景

图像增强: 当图像的对比度较低或细节不明显时,可以使用直方图匹配来增强图像的视觉效果。

颜色校正: 当图像受到光照条件的影响或者摄像设备的色彩偏差时,可以使用直方图匹配来校正颜色。

风格迁移: 在计算机视觉中,可以使用直方图匹配来实现图像的风格迁移,将一个图像的风格应用于另一个图像。

五、注意事项

在进行直方图匹配时,需要注意不同图像之间的直方图可能具有不同的范围和分布,因此需要进行适当的归一化和调整。

直方图匹配可能无法完全消除图像之间的差异,因为它仅考虑了像素值的分布,而忽略了像素之间的空间关系

对于某些特定的应用场景,可能需要结合其他图像处理技术来进一步提高匹配效果。

scikit-image 中的直方图匹配

skimage.exposure.match_histograms 是 scikit-image 库中用于直方图匹配的一个函数。该函数用于将一个图像的直方图与另一个图像的直方图相匹配,从而实现图像亮度和对比度的调整。以下是该函数的中文文档,包含其功能描述、参数说明和示例。

skimage.exposure.match_histograms

一、功能描述:

该函数将源图像的直方图与目标图像的直方图进行匹配,从而改变源图像的像素值,使其直方图与目标图像的直方图尽可能相似。这在图像处理中常用于增强图像的对比度或使不同图像之间的亮度和对比度更加一致。

二、参数说明:

source: ndarray 类型,输入图像,即需要进行直方图匹配的源图像。

template: ndarray 类型,目标图像,即源图像直方图要匹配的目标。

multichannel: bool 类型,可选参数,默认为 False。如果为 True,则对多通道图像进行独立匹配。这要求源图像和目标图像具有相同数量的通道。

三、返回值:

matched:ndarray 类型,与源图像形状相同的数组,其中包含了匹配后的像素值。

小试牛刀

from skimage import exposure
import matplotlib.pyplot as plt
import argparse
import cv2# 构造参数解析器并解析参数
ap = argparse.ArgumentParser()
ap.add_argument("-s", "--source", required=True, help="Path to the input source image")
ap.add_argument("-r", "--reference", required=True, help="Path to the input reference image")
args = vars(ap.parse_args())# 加载源和参考图像
print("[INFO] Loading source and reference images...")
src = cv2.imread(args["source"])
ref = cv2.imread(args["reference"])# 确定我们是否执行多通道直方图匹配,然后执行直方图匹配本身
print("[INFO] Performing histogram matching...")
multi = True if src.shape[-1] > 1 else Falsematched = exposure.match_histograms(src, ref, multichannel=multi)
# This was in skimage.transform between 0.14.2. It was moved to skimage.exposure with 0.16.0.# cv2.imwrite("matched.jpg", matched)# 显示输出图像
cv2.imshow("Source", src)
cv2.imshow("Reference", ref)
cv2.imshow("Matched", matched)
cv2.waitKey(0)# 构造一个图形来显示应用直方图匹配前后每个通道的直方图图
(fig, axs) = plt.subplots(nrows=3, ncols=3, figsize=(8, 8))# 循环遍历源图像、参考图像和输出匹配图像
for (i, image) in enumerate((src, ref, matched)):# 转换图像从BGR到RGB通道顺序image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 按RGB顺序循环通道名称for (j, color) in enumerate(("red", "green", "blue")):# 计算当前通道的直方图并绘制它(hist, bins) = exposure.histogram(image[..., j], source_range="dtype")axs[j, i].plot(bins, hist/hist.max())# 计算当前通道的累积分布函数并绘制它(cdf, bins) = exposure.cumulative_distribution(image[..., j])axs[j, i].plot(bins, cdf)# 将当前图形的y轴标签设置为当前颜色通道的名称axs[j, 0].set_ylabel(color)# 设置轴标题
axs[0, 0].set_title("Source")
axs[0, 1].set_title("Reference")
axs[0, 2].set_title("Matched")# 显示输出图
plt.tight_layout()
plt.show()

运行

python matching.py -s source.jpg -r reference.jpg

输入的 source.jpg

在这里插入图片描述

输入的 reference.jpg

在这里插入图片描述

直方图 matching 的结果

在这里插入图片描述

看看绘制的 RGB 三通道的直方图(蓝色)以及各自通道上的累积分布函数曲线(橙色)的绘制

请添加图片描述

风格迁移

看了小试牛刀,立刻想到了风格迁移,试试

source 图片还是蒙娜丽莎

在这里插入图片描述

reference 图片换成星空

在这里插入图片描述

看看匹配后的结果

在这里插入图片描述

看看RGB各通道的直方图和累积分布函数曲线

在这里插入图片描述

这篇关于【python】OpenCV—Histogram Matching(9.2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047837

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e