【Python机器学习】PCA——特征提取(2)

2024-06-10 08:12

本文主要是介绍【Python机器学习】PCA——特征提取(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇写过了用单一最近邻分类器训练后的精度只有0.22.

现在用PCA。想要度量人脸的相似度,计算原始像素空间中的距离是一种相当糟糕的方法。用像素表示来比较两张图像时,我们比较的是每个像素的灰度值与另一张图像对应位置的像素灰度值。这种表示与人们对人脸图像的解释方式有很大不同,使用这种原始表示很难获取到面部特征。例如,如果使用像素距离,那么将人脸向右移动一个像素将发生巨大变化,得到一个完全不同的表示。我们希望,使用沿着主成分方向的距离可以提高精度。这里我们启用PCA的白化选项,它将主成分缩放到相同的尺度提高精度。变换后的结果与使用StandardScaler相同。白化不仅对应旋转数据,还对应于缩放数据时期形状是圆形而不是椭圆形:

mglearn.plots.plot_pca_whitening()
plt.show()

我们对训练数据拟合PCA对象,并提取前100个主成分,然后对训练数据和测试数据进行变换。

pca=PCA(n_components=100,whiten=True,random_state=0).fit(X_train)
X_train_pca=pca.transform(X_train)
X_test_pca=pca.transform(X_test)print('X_train_pca.shape:{}'.format(X_train_pca.shape))

新数据有100个特征,即前100个主成分。现在,对新表示使用单一最近邻分类器来将新图像分类:

knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train_pca,y_train)
print('test set accuracy:{:.2f}'.format(knn.score(X_test_pca,y_test)))

可以看到精度有显著提升。这证实了我们的直觉,即主成分可能提供了一种更好的数据表示。

对于图像数据,我们还很容易地将找到的主成分可视化。成分对应于输入空间里的方向。这里的输入空间是87*65像素的灰度像素,所以这个空间中的方向也是87*65像素的灰度图像。

先看一下前几个主成分:


print('pca.components_.shape:{}'.format(pca.components_.shape))


fig,axes=plt.subplots(3,5,figsize=(15,12),subplot_kw={'xticks':(),'yticks':()})
for i,(components,ax) in enumerate(zip(pca.components_,axes.ravel())):ax.imshow(components.reshape(image_shape),cmap='viridis')ax.set_title('{}.components'.format((i+1)))
plt.show()

虽然我们肯定无法理解这些成分的所有内容,但可以猜测一些主成分捕捉到了人脸图像的哪些方面。第一个主成分似乎主要编码的是人脸与背景 的对比,第二个主成分编码的是人脸左半部分和右半部分的明暗程度差异,如此等等。虽然这种表示比原始像素值的语义稍强,但它仍与人们感知人脸的方式相去甚远。由于PCA模型是基于像素的,因此人脸的相对位置和明暗程度都对两张图像在像素表示中的相似程度有很大影响。但人脸的相对位置和明暗程度可能并不是人们首先感知的内容。在要求人们评价人脸的相似度时,它们更可能会使用年龄、性别、表情、发型等属性,而这些属性很难从像素强度中推断出来。重要的是要记住,算法对数据(特别是视觉数据)的解释通常与人类的解释方式不同。

回到PCA的具体案例。我们对PCA变换的介绍是:先旋转数据,然后删除方差较小的成分。另一种有用的解释是:尝试找到一些数字(PCA旋转后的新特征值),使我们可以将测试点表示为主成分的加权求和。

我们还可以用另一种方法来理解PCA模型,就是仅使用一些成分对原始数据进行重建。我们可以对人脸做类似的变换,将数据酱味道只包含一些主成分,然后反向旋转到原始空间。回到原始特征空间可以通过inverse_transform方法来实现。

分别利用10、50、100、500个成分对一些人脸进行重建并将其可视化:


mglearn.plots.plot_pca_faces(X_train,X_test,image_shape)
plt.show()

从结果上可以看到,在仅使用10个主成分时,进捕捉到图片的基本特点,比如人脸方向和明暗程度。随着使用的主成分越来越多,图像中也保留了越来越多的细节。如果使用的成分个数与像素个数相同,意味着我们旋转后不会丢弃任何信息,可以完美重建图像。

还可以尝试用PCA的前两个主成分,将数据集中所有人脸在散点图中可视化,其类别在图中给出,这与我们对cancer数据集所做的类似:


mglearn.discrete_scatter(X_train_pca[:,0],X_train_pca[:,1],y_train)
plt.xlabel('first')
plt.ylabel('second')
plt.show()

这篇关于【Python机器学习】PCA——特征提取(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047620

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用