使用`LD_PRELOAD`和`jemalloc`实现C/C++信号的内存堆栈信息收集

2024-06-10 06:28

本文主要是介绍使用`LD_PRELOAD`和`jemalloc`实现C/C++信号的内存堆栈信息收集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 0. 概要
    • 1. 编译jemalloc
    • 2. 编译钩子共享库liballoc_hook.so
    • 3. 使用`LD_PRELOAD`加载钩子库liballoc_hook.so测试
      • 3.1 设置环境变量
      • 3.2 使用`LD_PRELOAD`加载钩子库并运行程序
      • 3.3 发送`SIGUSR1`信号以触发堆栈信息打印
      • 3.4 使用jeprof解析heap堆栈信息文件
    • 4. 示例程序example.cpp代码
    • 5. 注意事项
    • 6. jemalloc的限制

0. 概要

本文介绍如何结合LD_PRELOADjemalloc,在接收到SIGUSR1信号时打印程序的堆栈信息。详细步骤包括编译和配置jemalloc,编写信号处理程序,并通过LD_PRELOAD加载共享库的方法。

1. 编译jemalloc

编译并安装启用prof功能的jemalloc。以下是Ubuntu 18.04上的编译步骤:

git clone https://github.com/jemalloc/jemalloc.git  # 本文测试的版本是jemalloc-5.3.0
cd jemalloc
./configure --prefix=/usr/local --enable-prof CFLAGS="-fPIC"
make -j10
sudo make install

确保编译 libjemalloc.a 时使用了 -fPIC 选项。

2. 编译钩子共享库liballoc_hook.so

创建一个名为alloc_hook.c的文件,并实现信号处理函数:

/*gcc -o liballoc_hook.so -shared -fPIC alloc_hook.c -Wl,-Bstatic -ljemalloc -Wl,-Bdynamic
*/
#include <jemalloc/jemalloc.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>// 信号处理函数
void handle_signal(int signum) {if (signum == SIGUSR1) {// 触发 jemalloc 的 heap profiling dumpmallctl("prof.dump", NULL, NULL, NULL, 0);printf("Heap profile dump generated.\n");}
}// 初始化函数
void __attribute__((constructor)) init_hook() {// 设置信号处理函数signal(SIGUSR1, handle_signal);printf("Signal handler for SIGUSR1 is set.\n");
}

使用以下命令编译liballoc_hook.so并静态链接libjemalloc.a

gcc -o liballoc_hook.so -shared -fPIC alloc_hook.c -Wl,-Bstatic -ljemalloc -Wl,-Bdynamic -lpthread

3. 使用LD_PRELOAD加载钩子库liballoc_hook.so测试

假设你的目标程序是example,通过LD_PRELOAD加载liballoc_hook.so钩子库,按照以下步骤运行和测试:

3.1 设置环境变量

export MALLOC_CONF="prof:true,prof_active:true,lg_prof_sample:0,tcache:false,prof_prefix:jeprof.out"
  • prof:true:启用配置文件。
  • prof_active:true:启用性能分析。
  • lg_prof_sample:0:设置采样率为最高。
  • tcache:false:禁用线程缓存,可能影响性能,但在进行性能分析时,可以提供更准确的内存分配数据。
  • prof_prefix:jeprof.out:指定性能分析输出文件前缀。

3.2 使用LD_PRELOAD加载钩子库并运行程序

LD_PRELOAD="/path/to/liballoc_hook.so" ./example

3.3 发送SIGUSR1信号以触发堆栈信息打印

killall -10 example 
# 或者
killall -SIGUSR1 example

通过以上步骤,你可以在接收到SIGUSR1信号时打印jemalloc的堆栈信息,并将其输出到本地目录。本文得到的堆栈信息文件名为jeprof.out.60571.0.m0.heap

3.4 使用jeprof解析heap堆栈信息文件

通过如下命令分析该堆栈信息文件:

jeprof --show_bytes --text --lines ./example ./jeprof.out.60571.0.m0.heap

解析结果示例如下:

$ jeprof --show_bytes --text --lines ./example jeprof.out.60571.0.m0.heap 
Using local file ./example.
Using local file jeprof.out.60571.0.m0.heap.
Total: 83512 B82944  99.3%  99.3%    82944  99.3% prof_backtrace_impl /tmp/jemalloc-5.3.0/src/prof_sys.c:103448   0.5%  99.9%      448   0.5% allocateIntArray /home/test/jemalloc_test/example.cpp:1380   0.1% 100.0%       80   0.1% allocateDynamicArray /home/test/jemalloc_test/example.cpp:32 (discriminator 1)32   0.0% 100.0%       32   0.0% allocateString /home/test/jemalloc_test/example.cpp:258   0.0% 100.0%        8   0.0% allocateDouble /home/test/jemalloc_test/example.cpp:190   0.0% 100.0%     1024   1.2% _IO_new_file_overflow /build/glibc-2ORdQG/glibc-2.27/libio/fileops.c:7590   0.0% 100.0%     1024   1.2% _IO_new_file_xsputn /build/glibc-2ORdQG/glibc-2.27/libio/fileops.c:12660   0.0% 100.0%     1024   1.2% _IO_puts /build/glibc-2ORdQG/glibc-2.27/libio/ioputs.c:400   0.0% 100.0%     1024   1.2% __GI__IO_doallocbuf /build/glibc-2ORdQG/glibc-2.27/libio/genops.c:3650   0.0% 100.0%     1024   1.2% __GI__IO_file_doallocate /build/glibc-2ORdQG/glibc-2.27/libio/filedoalloc.c:1010   0.0% 100.0%      568   0.7% __libc_start_main /build/glibc-2ORdQG/glibc-2.27/csu/../csu/libc-start.c:3100   0.0% 100.0%    82944  99.3% _dl_start_user :?0   0.0% 100.0%      568   0.7% _start ??:?0   0.0% 100.0%      448   0.5% allocateMemory /home/test/jemalloc_test/example.cpp:510   0.0% 100.0%        8   0.0% allocateMemory /home/test/jemalloc_test/example.cpp:520   0.0% 100.0%       32   0.0% allocateMemory /home/test/jemalloc_test/example.cpp:530   0.0% 100.0%       80   0.1% allocateMemory /home/test/jemalloc_test/example.cpp:540   0.0% 100.0%    82944  99.3% call_init /build/glibc-2ORdQG/glibc-2.27/elf/dl-init.c:720   0.0% 100.0%    82944  99.3% imalloc (inline) /tmp/jemalloc-5.3.0/src/jemalloc.c:26940   0.0% 100.0%    82944  99.3% imalloc_body (inline) /tmp/jemalloc-5.3.0/src/jemalloc.c:25500   0.0% 100.0%     1024   1.2% init_hook ??:?0   0.0% 100.0%    82944  99.3% je_malloc_default /tmp/jemalloc-5.3.0/src/jemalloc.c:27220   0.0% 100.0%    82944  99.3%je_prof_backtrace /tmp/jemalloc-5.3.0/src/prof_sys.c:2840   0.0% 100.0%    82944  99.3% je_prof_tctx_create /tmp/jemalloc-5.3.0/src/prof.c:1950   0.0% 100.0%      568   0.7% main /home/test/jemalloc_test/example.cpp:600   0.0% 100.0%    82944  99.3% prof_alloc_prep (inline) /tmp/jemalloc-5.3.0/include/jemalloc/internal/prof_inlines.h:1410   0.0% 100.0%    81920  98.1% std::__once_callable ??:0

4. 示例程序example.cpp代码

以下是完整的example.cpp代码,编译方法: g++ -g -o example example.cpp

#include <sys/mman.h>           // mmap, munmap
#include <unistd.h>             // usleep
#include <csignal>              // signal, sigaction
#include <cstdlib>              // rand()和srand()
#include <ctime>                // time()
#include <iostream>
#include <string>
#include <vector>// 分配int数组
void allocateIntArray() {const int* intPtr = new int[100];std::cout << "Allocated int array at: " << intPtr << std::endl;
}// 分配double
void allocateDouble() {const double* doublePtr = new double(3.14);std::cout << "Allocated double at: " << doublePtr << ", value: " << *doublePtr << std::endl;
}// 分配字符串
void allocateString() {const std::string* strPtr = new std::string("Hello, World!");std::cout << "Allocated string at: " << strPtr << ", value: " << *strPtr << std::endl;
}// 分配动态数组
void allocateDynamicArray() {size_t arraySize = 10;size_t* const arrayPtr = new size_t[arraySize];std::cout << "Allocated array of " << arraySize << " ints at: " << arrayPtr << std::endl;for (size_t i = 0; i < arraySize; ++i) {arrayPtr[i] = i;}
}// 使用mmap分配内存
void allocateMmap() {size_t mmapSize = 4096;  // 4KBconst void* mmapPtr = mmap(nullptr, mmapSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);if (mmapPtr == MAP_FAILED) {perror("mmap failed");} else {std::cout << "Allocated mmap at: " << mmapPtr << ", size: " << mmapSize << " bytes" << std::endl;}
}void allocateMemory() {allocateIntArray();allocateDouble();allocateString();allocateDynamicArray();allocateMmap();
}int main() {usleep(100000);  // 100msallocateMemory();while (true) {usleep(100000);  // 100ms}return 0;
}

5. 注意事项

  • 编译libjemalloc.a时请记得添加CFLAGS="-fPIC"

    ./configure --prefix=/usr/local --enable-prof CFLAGS="-fPIC"
    
  • liballoc_hook.so必须是静态链接libjemalloc.a

  • liballoc_hook.so需要动态链接libpthread.so,编译时记得切回动态链接方式:

    gcc -o liballoc_hook.so -shared -fPIC alloc_hook.c -Wl,-Bstatic -ljemalloc -Wl,-Bdynamic -lpthread
    
  • 请勿使用动态加载libjemalloc.so。如果使用如下命令:

    LD_PRELOAD="/path/to/liballoc_hook.so /usr/local/lib/libjemalloc.so" ./example
    

jeprof解析heap的结果会显示为:

$ jeprof --show_bytes --text --lines ./example ./jeprof.out.60571.0.m0.heap 
Using local file ./example.
Using local file ./jeprof.out.60571.0.m0.heap.
Total: 83512 B83512 100.0% 100.0%    83512 100.0% prof_backtrace_impl /tmp/jemalloc-5.3.0/src/prof_sys.c:1030   0.0% 100.0%      568   0.7% 0x00005610af62de49 ??:00   0.0% 100.0%      448   0.5% 0x00005610af62df3b ??:00   0.0% 100.0%        8   0.0% 0x00005610af62df8e ??:00   0.0% 100.0%       32   0.0% 0x00005610af62e039 ??:00   0.0% 100.0%       80   0.1% 0x00005610af62e137 ??:00   0.0% 100.0%      448   0.5% 0x00005610af62e299 ??:00   0.0% 100.0%        8   0.0% 0x00005610af62e29e ??:00   0.0% 100.0%       32   0.0% 0x00005610af62e2a3 ??:00   0.0% 100.0%       80   0.1% 0x00005610af62e2a8 ??:00   0.0% 100.0%      568   0.7% 0x00005610af62e2c3 ??:0

可以看到example.cpp部分的信息无法显示,因此不可使用LD_PRELOAD同时加载liballoc_hook.solibjemalloc.so

6. jemalloc的限制

尽管jemalloc在内存管理和性能分析方面具有强大的功能,但它也存在一些限制:

  • 无法hook mmap
    jemalloc无法hook通过mmapmunmap进行的内存分配。这意味着如果程序中大量使用mmap进行内存分配,这部分内存不会被jemalloc监控和管理,也不会包含在jemalloc的内存分析报告中。因此,对于需要分析这种内存分配行为的程序,jemalloc可能不是最佳选择。

  • 无法hook线程相关信息
    jemalloc无法直接监控线程的创建和销毁。这对于某些需要详细分析线程行为的应用程序来说是一个限制。尽管jemalloc可以通过配置和编译选项优化内存分配以适应多线程环境,但它不能提供与线程操作相关的详细信息。

  • 无法hook直接系统调用的内存分配
    如果程序通过直接系统调用(如brk或其他系统级内存分配调用)分配内存,这些调用将绕过jemalloc的内存管理机制。因此,jemalloc无法跟踪这些内存分配行为,导致分析结果不完整。

  • 高采样率对性能的影响
    开启高采样率(如lg_prof_sample:0)会显著影响程序的性能。虽然高采样率能够提供更详细和频繁的内存分配数据,但它也会导致程序运行速度变慢。因此,在生产环境中需要权衡采样率和性能之间的关系。

  • 配置和使用复杂度
    正确配置和使用jemalloc需要一定的专业知识和经验。对于不熟悉内存管理和性能分析的开发者来说,jemalloc的配置选项和参数可能显得复杂,容易出错。因此,在使用jemalloc进行内存分析之前,建议详细阅读官方文档并进行充分测试。

  • 与其他内存管理库的兼容性问题
    在某些情况下,jemalloc可能与其他内存管理库或工具产生兼容性问题。这可能导致程序在链接和运行时遇到问题。因此,在将jemalloc集成到现有项目时,需要进行全面的测试以确保兼容性。

总的来说,尽管jemalloc是一款功能强大的内存管理库,但在使用过程中需要注意其自身的限制,并根据具体需求进行权衡和取舍。

这篇关于使用`LD_PRELOAD`和`jemalloc`实现C/C++信号的内存堆栈信息收集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047420

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统