使用`LD_PRELOAD`和`jemalloc`实现C/C++信号的内存堆栈信息收集

2024-06-10 06:28

本文主要是介绍使用`LD_PRELOAD`和`jemalloc`实现C/C++信号的内存堆栈信息收集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 0. 概要
    • 1. 编译jemalloc
    • 2. 编译钩子共享库liballoc_hook.so
    • 3. 使用`LD_PRELOAD`加载钩子库liballoc_hook.so测试
      • 3.1 设置环境变量
      • 3.2 使用`LD_PRELOAD`加载钩子库并运行程序
      • 3.3 发送`SIGUSR1`信号以触发堆栈信息打印
      • 3.4 使用jeprof解析heap堆栈信息文件
    • 4. 示例程序example.cpp代码
    • 5. 注意事项
    • 6. jemalloc的限制

0. 概要

本文介绍如何结合LD_PRELOADjemalloc,在接收到SIGUSR1信号时打印程序的堆栈信息。详细步骤包括编译和配置jemalloc,编写信号处理程序,并通过LD_PRELOAD加载共享库的方法。

1. 编译jemalloc

编译并安装启用prof功能的jemalloc。以下是Ubuntu 18.04上的编译步骤:

git clone https://github.com/jemalloc/jemalloc.git  # 本文测试的版本是jemalloc-5.3.0
cd jemalloc
./configure --prefix=/usr/local --enable-prof CFLAGS="-fPIC"
make -j10
sudo make install

确保编译 libjemalloc.a 时使用了 -fPIC 选项。

2. 编译钩子共享库liballoc_hook.so

创建一个名为alloc_hook.c的文件,并实现信号处理函数:

/*gcc -o liballoc_hook.so -shared -fPIC alloc_hook.c -Wl,-Bstatic -ljemalloc -Wl,-Bdynamic
*/
#include <jemalloc/jemalloc.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>// 信号处理函数
void handle_signal(int signum) {if (signum == SIGUSR1) {// 触发 jemalloc 的 heap profiling dumpmallctl("prof.dump", NULL, NULL, NULL, 0);printf("Heap profile dump generated.\n");}
}// 初始化函数
void __attribute__((constructor)) init_hook() {// 设置信号处理函数signal(SIGUSR1, handle_signal);printf("Signal handler for SIGUSR1 is set.\n");
}

使用以下命令编译liballoc_hook.so并静态链接libjemalloc.a

gcc -o liballoc_hook.so -shared -fPIC alloc_hook.c -Wl,-Bstatic -ljemalloc -Wl,-Bdynamic -lpthread

3. 使用LD_PRELOAD加载钩子库liballoc_hook.so测试

假设你的目标程序是example,通过LD_PRELOAD加载liballoc_hook.so钩子库,按照以下步骤运行和测试:

3.1 设置环境变量

export MALLOC_CONF="prof:true,prof_active:true,lg_prof_sample:0,tcache:false,prof_prefix:jeprof.out"
  • prof:true:启用配置文件。
  • prof_active:true:启用性能分析。
  • lg_prof_sample:0:设置采样率为最高。
  • tcache:false:禁用线程缓存,可能影响性能,但在进行性能分析时,可以提供更准确的内存分配数据。
  • prof_prefix:jeprof.out:指定性能分析输出文件前缀。

3.2 使用LD_PRELOAD加载钩子库并运行程序

LD_PRELOAD="/path/to/liballoc_hook.so" ./example

3.3 发送SIGUSR1信号以触发堆栈信息打印

killall -10 example 
# 或者
killall -SIGUSR1 example

通过以上步骤,你可以在接收到SIGUSR1信号时打印jemalloc的堆栈信息,并将其输出到本地目录。本文得到的堆栈信息文件名为jeprof.out.60571.0.m0.heap

3.4 使用jeprof解析heap堆栈信息文件

通过如下命令分析该堆栈信息文件:

jeprof --show_bytes --text --lines ./example ./jeprof.out.60571.0.m0.heap

解析结果示例如下:

$ jeprof --show_bytes --text --lines ./example jeprof.out.60571.0.m0.heap 
Using local file ./example.
Using local file jeprof.out.60571.0.m0.heap.
Total: 83512 B82944  99.3%  99.3%    82944  99.3% prof_backtrace_impl /tmp/jemalloc-5.3.0/src/prof_sys.c:103448   0.5%  99.9%      448   0.5% allocateIntArray /home/test/jemalloc_test/example.cpp:1380   0.1% 100.0%       80   0.1% allocateDynamicArray /home/test/jemalloc_test/example.cpp:32 (discriminator 1)32   0.0% 100.0%       32   0.0% allocateString /home/test/jemalloc_test/example.cpp:258   0.0% 100.0%        8   0.0% allocateDouble /home/test/jemalloc_test/example.cpp:190   0.0% 100.0%     1024   1.2% _IO_new_file_overflow /build/glibc-2ORdQG/glibc-2.27/libio/fileops.c:7590   0.0% 100.0%     1024   1.2% _IO_new_file_xsputn /build/glibc-2ORdQG/glibc-2.27/libio/fileops.c:12660   0.0% 100.0%     1024   1.2% _IO_puts /build/glibc-2ORdQG/glibc-2.27/libio/ioputs.c:400   0.0% 100.0%     1024   1.2% __GI__IO_doallocbuf /build/glibc-2ORdQG/glibc-2.27/libio/genops.c:3650   0.0% 100.0%     1024   1.2% __GI__IO_file_doallocate /build/glibc-2ORdQG/glibc-2.27/libio/filedoalloc.c:1010   0.0% 100.0%      568   0.7% __libc_start_main /build/glibc-2ORdQG/glibc-2.27/csu/../csu/libc-start.c:3100   0.0% 100.0%    82944  99.3% _dl_start_user :?0   0.0% 100.0%      568   0.7% _start ??:?0   0.0% 100.0%      448   0.5% allocateMemory /home/test/jemalloc_test/example.cpp:510   0.0% 100.0%        8   0.0% allocateMemory /home/test/jemalloc_test/example.cpp:520   0.0% 100.0%       32   0.0% allocateMemory /home/test/jemalloc_test/example.cpp:530   0.0% 100.0%       80   0.1% allocateMemory /home/test/jemalloc_test/example.cpp:540   0.0% 100.0%    82944  99.3% call_init /build/glibc-2ORdQG/glibc-2.27/elf/dl-init.c:720   0.0% 100.0%    82944  99.3% imalloc (inline) /tmp/jemalloc-5.3.0/src/jemalloc.c:26940   0.0% 100.0%    82944  99.3% imalloc_body (inline) /tmp/jemalloc-5.3.0/src/jemalloc.c:25500   0.0% 100.0%     1024   1.2% init_hook ??:?0   0.0% 100.0%    82944  99.3% je_malloc_default /tmp/jemalloc-5.3.0/src/jemalloc.c:27220   0.0% 100.0%    82944  99.3%je_prof_backtrace /tmp/jemalloc-5.3.0/src/prof_sys.c:2840   0.0% 100.0%    82944  99.3% je_prof_tctx_create /tmp/jemalloc-5.3.0/src/prof.c:1950   0.0% 100.0%      568   0.7% main /home/test/jemalloc_test/example.cpp:600   0.0% 100.0%    82944  99.3% prof_alloc_prep (inline) /tmp/jemalloc-5.3.0/include/jemalloc/internal/prof_inlines.h:1410   0.0% 100.0%    81920  98.1% std::__once_callable ??:0

4. 示例程序example.cpp代码

以下是完整的example.cpp代码,编译方法: g++ -g -o example example.cpp

#include <sys/mman.h>           // mmap, munmap
#include <unistd.h>             // usleep
#include <csignal>              // signal, sigaction
#include <cstdlib>              // rand()和srand()
#include <ctime>                // time()
#include <iostream>
#include <string>
#include <vector>// 分配int数组
void allocateIntArray() {const int* intPtr = new int[100];std::cout << "Allocated int array at: " << intPtr << std::endl;
}// 分配double
void allocateDouble() {const double* doublePtr = new double(3.14);std::cout << "Allocated double at: " << doublePtr << ", value: " << *doublePtr << std::endl;
}// 分配字符串
void allocateString() {const std::string* strPtr = new std::string("Hello, World!");std::cout << "Allocated string at: " << strPtr << ", value: " << *strPtr << std::endl;
}// 分配动态数组
void allocateDynamicArray() {size_t arraySize = 10;size_t* const arrayPtr = new size_t[arraySize];std::cout << "Allocated array of " << arraySize << " ints at: " << arrayPtr << std::endl;for (size_t i = 0; i < arraySize; ++i) {arrayPtr[i] = i;}
}// 使用mmap分配内存
void allocateMmap() {size_t mmapSize = 4096;  // 4KBconst void* mmapPtr = mmap(nullptr, mmapSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);if (mmapPtr == MAP_FAILED) {perror("mmap failed");} else {std::cout << "Allocated mmap at: " << mmapPtr << ", size: " << mmapSize << " bytes" << std::endl;}
}void allocateMemory() {allocateIntArray();allocateDouble();allocateString();allocateDynamicArray();allocateMmap();
}int main() {usleep(100000);  // 100msallocateMemory();while (true) {usleep(100000);  // 100ms}return 0;
}

5. 注意事项

  • 编译libjemalloc.a时请记得添加CFLAGS="-fPIC"

    ./configure --prefix=/usr/local --enable-prof CFLAGS="-fPIC"
    
  • liballoc_hook.so必须是静态链接libjemalloc.a

  • liballoc_hook.so需要动态链接libpthread.so,编译时记得切回动态链接方式:

    gcc -o liballoc_hook.so -shared -fPIC alloc_hook.c -Wl,-Bstatic -ljemalloc -Wl,-Bdynamic -lpthread
    
  • 请勿使用动态加载libjemalloc.so。如果使用如下命令:

    LD_PRELOAD="/path/to/liballoc_hook.so /usr/local/lib/libjemalloc.so" ./example
    

jeprof解析heap的结果会显示为:

$ jeprof --show_bytes --text --lines ./example ./jeprof.out.60571.0.m0.heap 
Using local file ./example.
Using local file ./jeprof.out.60571.0.m0.heap.
Total: 83512 B83512 100.0% 100.0%    83512 100.0% prof_backtrace_impl /tmp/jemalloc-5.3.0/src/prof_sys.c:1030   0.0% 100.0%      568   0.7% 0x00005610af62de49 ??:00   0.0% 100.0%      448   0.5% 0x00005610af62df3b ??:00   0.0% 100.0%        8   0.0% 0x00005610af62df8e ??:00   0.0% 100.0%       32   0.0% 0x00005610af62e039 ??:00   0.0% 100.0%       80   0.1% 0x00005610af62e137 ??:00   0.0% 100.0%      448   0.5% 0x00005610af62e299 ??:00   0.0% 100.0%        8   0.0% 0x00005610af62e29e ??:00   0.0% 100.0%       32   0.0% 0x00005610af62e2a3 ??:00   0.0% 100.0%       80   0.1% 0x00005610af62e2a8 ??:00   0.0% 100.0%      568   0.7% 0x00005610af62e2c3 ??:0

可以看到example.cpp部分的信息无法显示,因此不可使用LD_PRELOAD同时加载liballoc_hook.solibjemalloc.so

6. jemalloc的限制

尽管jemalloc在内存管理和性能分析方面具有强大的功能,但它也存在一些限制:

  • 无法hook mmap
    jemalloc无法hook通过mmapmunmap进行的内存分配。这意味着如果程序中大量使用mmap进行内存分配,这部分内存不会被jemalloc监控和管理,也不会包含在jemalloc的内存分析报告中。因此,对于需要分析这种内存分配行为的程序,jemalloc可能不是最佳选择。

  • 无法hook线程相关信息
    jemalloc无法直接监控线程的创建和销毁。这对于某些需要详细分析线程行为的应用程序来说是一个限制。尽管jemalloc可以通过配置和编译选项优化内存分配以适应多线程环境,但它不能提供与线程操作相关的详细信息。

  • 无法hook直接系统调用的内存分配
    如果程序通过直接系统调用(如brk或其他系统级内存分配调用)分配内存,这些调用将绕过jemalloc的内存管理机制。因此,jemalloc无法跟踪这些内存分配行为,导致分析结果不完整。

  • 高采样率对性能的影响
    开启高采样率(如lg_prof_sample:0)会显著影响程序的性能。虽然高采样率能够提供更详细和频繁的内存分配数据,但它也会导致程序运行速度变慢。因此,在生产环境中需要权衡采样率和性能之间的关系。

  • 配置和使用复杂度
    正确配置和使用jemalloc需要一定的专业知识和经验。对于不熟悉内存管理和性能分析的开发者来说,jemalloc的配置选项和参数可能显得复杂,容易出错。因此,在使用jemalloc进行内存分析之前,建议详细阅读官方文档并进行充分测试。

  • 与其他内存管理库的兼容性问题
    在某些情况下,jemalloc可能与其他内存管理库或工具产生兼容性问题。这可能导致程序在链接和运行时遇到问题。因此,在将jemalloc集成到现有项目时,需要进行全面的测试以确保兼容性。

总的来说,尽管jemalloc是一款功能强大的内存管理库,但在使用过程中需要注意其自身的限制,并根据具体需求进行权衡和取舍。

这篇关于使用`LD_PRELOAD`和`jemalloc`实现C/C++信号的内存堆栈信息收集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047420

相关文章

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1