算法竞赛一句话解题经典问题分析 ©ntsc 2024

2024-06-10 00:36

本文主要是介绍算法竞赛一句话解题经典问题分析 ©ntsc 2024,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原名:算法竞赛一句话解题&经典问题分析 ©ntsc 2024

处理进度

  • 绿:P1381【~P(今日进度)】
  • 蓝:P1099

致CSDN网友:
本文章不定期更新!文章链接:

经典问题分析

基础知识与编程环境

  • 了解树的中序遍历的性质来设计算法→P1040

思维

  • 考虑每一个数字的贡献而不是考虑每一种情况那个数字做贡献→mna.816/p4

  • 观察数据访问,发现一个范围很小→将这个数据作为最外层循环,每次考虑这个数据取特定值时的答案的求解→P1311

  • 求最优化一个计算式,并且里面有一个值需要你来确定,并且不好直接求→二分→优化每一次计算过程→O(n)求多个询问区间内>m的数字的个数之和→先把≤m的数字赋0,然后跑前缀和,再对每个询问O(1)处理→P1314

  • 将字符串哈希后离散化→双指针,右端点不断扩散(右移),左端点贪心地缩小(右移)→P1381

STL 模板

排序算法

  • 在DAG中,更新一个点的信息如果需要先更新其来点→拓扑排序→P1038

  • 一些偏序问题(非计数类),考虑拓扑排序进行顺序确定→考虑不同情况反映在DAG中的情况→一定有序:存在n长链/错误:有环→P1347

搜索算法

  • O ( 2 40 ) O(2^{40}) O(240)的搜索→Meet in the middle

  • 数据范围小的时候可以考虑直接搜索(填表)→P1004

  • 有些时候看上去n不适合搜索(e.g. n=50),但是加上剪枝也许就是正解→剪枝优化时间复杂度的证明和计算→P1034

  • 常见数矩阵个数优化(n4变n3)→P1191

  • 结合计算性质进行剪枝→P1092

  • 枚举→P1378

图论算法

  • 应用分层图思想【模型】→P1073

  • 记录附加信息的最短路→P1078,P1144

  • 给定关系求层级数最小值→先整理出约束(e.g. A在B之上),连有向边→求最长链→拓扑排序→P1983

  • 总结出最后的图的特点→生成树→最大生成树→证明某些很难解决的情况不存在→简单解决→P1265

线性结构

集合与森林

  • 使用并查集额外维护集合信息→将集合信息统一整理至某一个集合的代表元素上去,注意清空过期的代表元素→P1196

  • 断边维护连通块个数→化断边为加边→P1197

树形结构

  • 维护树链上的信息→树上倍增,树剖

  • 维护子树信息→dfn线段树

  • 从题目中整理出树的性质→设计树形dp进行最优方案求解→P1131

  • 结合数据范围,预估复杂度→搜索→设计搜索→因为每一层只能切断一个,所以就可以对每一个节点搜索其最优的切断方式(使用回溯的数据来贪心选择)→P1041

  • 理清题意→整理出答案的几种来源/情况→对于每一种情况独立思考做法,最后组合起来→P1099←答案有两种情况:来自直径两端,来自最长的侧链。并且来自最长的侧链的那个答案只需要计算侧链端点到直径的距离即可。不需要考虑侧链+一部分直径的情况,因为如果这种情况可以作为答案,那么直径就要改了!

数据结构

  • 动态维护数字序列信息→权值线段树→P1168

  • 线段树模板→P1198,P1253

算法策略

  • 维护4指针2区间信息→莫队,将4指针拆为2指针及多个询问→P5268

字符串算法 哈希表

动态规划

  • 用“非法情况一定更劣”来消去需要考虑非法的情况→P1006

  • dp不就是枚举情况并选最优吗?→P1040

  • 断环为链→P1043,P1063

  • 题目中有明显的“合并”流程,则考虑区间dp→P1063

  • 依赖背包嗯可以看成树形dp来做,如附件数量很少则可以枚举每个主件和附件的配对情况并作为一个物品的多种情况。当遇到一个物品有多个挡位时的背包问题也可以参考本题→P1064

  • 从题目信息中构造出背包(f_{i,j})的物品(i)及两个维度(价值(f)和容量(j))→P1156,P1282

  • 考虑树形dp并考虑复杂度→P1273

  • 主要考验dp转移的设计以及dp优化→思维→P1070

  • 一开始考虑贪心→给定方案计算答案很快→不好实现,所以使用搜索(计算每一种可行情况)→使用dp实现记忆化搜索→压维优化→P1284

  • 期望dp→得出概率的计算式→使用dp求出计算式中的值并计算→本题:第i题对的概率=i-1题答案=i题答案→P1297

  • 树形dp,最大权独立集→P1352

数学与其他

初等数学

  • 总结出性质来优化枚举的复杂度→P1072

  • 要勤于推导式子→推导后得出贪心算法而不是一开始选择dp→P1080

初等数论

  • 扩展欧几里得变形与理解→P1082

  • 矩阵乘法→P1349

离散与组合数学

线性代数

高等数学

最优化

  • 博弈论→P1247

  • 舞蹈链及其变形→P1074

计算几何

信息论

这篇关于算法竞赛一句话解题经典问题分析 ©ntsc 2024的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046753

相关文章

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map