手写kNN算法的实现-用余弦相似度来度量距离

2024-06-09 22:44

本文主要是介绍手写kNN算法的实现-用余弦相似度来度量距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设a为预测点,b为其中一个样本点,在向量空间里,它们的形成的夹角为θ,那么θ越小(cosθ的值越接近1),就说明a点越接近b点。所以我们可以通过考察余弦相似度来预测a点的类型。

在这里插入图片描述

在这里插入图片描述

from collections import Counter
import numpy as npclass MyKnn:def __init__(self,neighbors):self.k = neighborsdef fit(self,X,Y):self.X = np.array(X)self.Y = np.array(Y)if self.X.ndim != 2 or self.Y.ndim != 1:raise Exception("dimensions are wrong!")if self.X.shape[0] != self.Y.shape[0]:raise Exception("input labels are not correct!")def predict(self,X_pre):pre = np.array(X_pre)if self.X.ndim != pre.ndim:raise Exception("input dimensions are wrong!")rs = []for p in pre:temp = []for a in self.X:cos = (p @ a)/np.linalg.norm(p)/np.linalg.norm(a)temp.append(cos)temp = np.array(temp)indices = np.argsort(temp)[:-self.k-1:-1]ss = np.take(self.Y,indices)found = Counter(ss).most_common(1)[0][0]print(found)rs.append(found)return np.array(rs)

测试:

# 用鸢尾花数据集来验证我们上面写的算法
from sklearn.datasets import load_iris
# 使用train_test_split对数据集进行拆分,一部分用于训练,一部分用于测试验证
from sklearn.model_selection import train_test_split
# 1.生成一个kNN模型
myknn = MyKnn(5)
# 2.准备数据集:特征集X_train和标签集y_train
X_train,y_train = load_iris(return_X_y=True)
# 留出30%的数据集用于验证测试
X_train,X_test,y_train,y_test = train_test_split(X_train,y_train,test_size=0.3)
# 3.训练模型
myknn.fit(X_train,y_train)
# 4.预测,acc就是预测结果
acc = myknn.predict(X_test)
# 计算准确率
(acc == y_test).mean()

其实如果余弦相似度来进行分类,那么根据文章最开头讲到的,其实取余弦值最大的点作为预测类型也可以:

import numpy as npclass MyClassicfication:def fit(self,X,Y):self.X = np.array(X)self.Y = np.array(Y)if self.X.ndim != 2 or self.Y.ndim != 1:raise Exception("dimensions are wrong!")if self.X.shape[0] != self.Y.shape[0]:raise Exception("input labels are not correct!")def predict(self,X_pre):pre = np.array(X_pre)if self.X.ndim != pre.ndim:raise Exception("input dimensions are wrong!")rs = []for p in pre:temp = []for a in self.X:cos = (p @ a)/np.linalg.norm(p)/np.linalg.norm(a)temp.append(cos)temp = np.array(temp)index = np.argsort(temp)[-1]found = np.take(self.Y,index)rs.append(found)return np.array(rs)

测试:

# 用鸢尾花数据集来验证我们上面写的算法
from sklearn.datasets import load_iris
# 使用train_test_split对数据集进行拆分,一部分用于训练,一部分用于测试验证
from sklearn.model_selection import train_test_split
# 1.生成一个kNN模型
myCla = MyClassicfication
# 2.准备数据集:特征集X_train和标签集y_train
X_train,y_train = load_iris(return_X_y=True)
# 留出30%的数据集用于验证测试
X_train,X_test,y_train,y_test = train_test_split(X_train,y_train,test_size=0.3)
# 3.训练模型
myCla.fit(X_train,y_train)
# 4.预测,acc就是预测结果
acc = myCla.predict(X_test)
# 计算准确率
(acc == y_test).mean()

经测试,上面两种方式的准确率是差不多的。

这篇关于手写kNN算法的实现-用余弦相似度来度量距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046512

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter