相机标定中一些细节--畸变模型和参数

2024-06-09 11:52

本文主要是介绍相机标定中一些细节--畸变模型和参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

张正友标定方法做相机标定的主要过程是先估计每张图片的单应性矩阵,然后通过这一系列的单应性矩阵估计出内外参数初值,最后再考虑畸变模型的加入进行非线性优化。同时优化内参、外参和畸变参使得重投影误差最小。

镜头的畸变表现出来的非线性关系,通常使用一些近似的手段来建模逼近它,如下几种常见的镜头畸变模型:

  • Brown-Conrady
  • Brandt-Kannala
  • CMei
  • David Scaramuzza

其中Brown-Conrady适用于畸变较小的情况,另外几个畸变模型都是针对广角和鱼眼镜头设计的。要做好一个相机的标定除了精确的标定板和规范的图片采集过程,还需要选择合适的标定模型和参数才能达到。在此主要讨论Brown-Conrady模型的一些情况。

Brown-Conrady 畸变模型

即是Opencv中经常用到的[k1,k2,p1,p2,k3,…]这套参数。在opencv的issue中曾经有人提到一类标定问题,主要情况是重投影误差小但是矫正后的图片比较奇怪,具体的说就是校正后的图片中间区域很正直,但是边缘区域就一团糟了。这在后续的AR/SLAM/SFM等应用中会带来各种问题。

这一情况主要的原因有:

1、图片采集不规范,用于标定的图片大多集中在图像中间区域,标定板变化姿态不多,使得标定结果过拟合图像中间区域引起。规范采图即可解决。

2、还有就是畸变参数选择不合适引起的优化过拟合结果。

在这一畸变模型中 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 1 + k_1 r^2 + k_2 r^4 + k_3 r^6 1+k1r2+k2r4+k3r6,径向畸变用高次多项式来逼近这一非线性关系,而忽略了实际透镜的畸变特点进行非线性优化。虽然能达到一定的拟合效果,但是带来了更多的自由度变化空间。也即是高次多项式函数能近似镜头的非线性畸变但不仅限于此,很可能会使得重投影误差虽然更小了,但是远离了镜头实际畸变关系达到过拟合的情况。例如我们拟合带噪声的二次抛物线,用二次多项式拟合的残差通常会大于用更高次的多项式拟合的残差,但是曲里拐弯的高次多项式并不适配二次抛物线的本来面目。也违背了赤池信息量准则。

更具体的说,径向畸变的高次多项式函数需要满足单调性约束。要么单调递增(枕形畸变)要么单调递减(桶形畸变),才符合真实镜头的畸变特点。而Opencv中的优化过程并未考虑这一约束进行优化,使得最后的标定结果常常走样,远离了相机镜头真实的成像关系。当不使用k3时,会自然满足这一单调性约束。在一些资料中有说只使用k1和k2就够了,背后原因阐明不多。

此外[k4,k5,k6]是在畸变较大的情况引入的,比如广角和鱼眼相机的畸变,为了使用更小的阶数来达到更高阶数多项式模型的矫正效果。而实际带来了更多的优化参数,往往效果欠佳。对于这类大畸变需要使用后三种畸变模型。如果要使用[k4,k5,k6]需要保证 1 + k 4 r 2 + k 5 r 4 + k 6 r 6 1 + k_4 r^2 + k_5 r^4 + k_6 r^6 1+k4r2+k5r4+k6r6的所有根要在图像边界外,否则边界内有像素使得分母为0带来异常。

https://github.com/opencv/opencv/issues/15992
https://github.com/opencv/opencv/issues/15577

小结

总而言之,在一般的非广角相机使用k1和k2足矣,或者再添加p1和p2即可,若使用k3一定要小心。如果是广角和鱼眼相机使用另外三种畸变模型。

在线标定工具

标定一次输出三种畸变模型的结果,方便进行对比挑选。
参考 https://blog.csdn.net/J10527/article/details/137022339
在这里插入图片描述

这篇关于相机标定中一些细节--畸变模型和参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045102

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小