Spring AI 第二讲 之 Chat Model API 第九节 watsonx.ai Chat

2024-06-09 11:36

本文主要是介绍Spring AI 第二讲 之 Chat Model API 第九节 watsonx.ai Chat,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过 watsonx.ai,你可以在本地运行各种大型语言模型(LLM),并从中生成文本。Spring AI 通过 WatsonxAiChatModel 支持 watsonx.ai 文本生成。

您首先需要拥有一个 watsonx.ai 的 SaaS 实例(以及一个 IBM 云帐户)。

请参阅免费试用,免费试用 watsonx.ai

更多信息请点击此处

自动配置

Spring AI 为 watsonx.ai 聊天客户端提供了 Spring Boot 自动配置功能。要启用它,请在项目的 Maven pom.xml 文件中添加以下依赖项:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-watsonx-ai-spring-boot-starter</artifactId>
</dependency>

 或 Gradle build.gradle 构建文件。

dependencies {implementation 'org.springframework.ai:spring-ai-watsonx-ai-spring-boot-starter'
}

聊天属性

连接属性

前缀 spring.ai.watsonx.ai 用作属性前缀,可让您连接到 watsonx.ai。

PropertyDescriptionDefault

spring.ai.watsonx.ai.base-url

要连接的 URL

us-south.ml.cloud.ibm.com

spring.ai.watsonx.ai.stream-endpoint

流媒体端点

generation/stream?version=2023-05-29

spring.ai.watsonx.ai.text-endpoint

文本终端

generation/text?version=2023-05-29

spring.ai.watsonx.ai.project-id

项目 ID

-

spring.ai.watsonx.ai.iam-token

IBM 云账户 IAM 令牌

-

配置属性

spring.ai.watsonx.ai.chat 前缀是让你配置 Watsonx.AI 聊天模型实现的属性前缀。 

PropertyDescriptionDefault

spring.ai.watsonx.ai.chat.enabled

启用 Watsonx.AI 聊天模型。

true

spring.ai.watsonx.ai.chat.options.temperature

模型的温度。温度越高,模型的答案越有创意。

0.7

spring.ai.watsonx.ai.chat.options.top-p

与 top-k 一起使用。较高的值(如 0.95)将产生更多样化的文本,而较低的值(如 0.2)将产生更集中和保守的文本。

1.0

spring.ai.watsonx.ai.chat.options.top-k

降低产生无意义答案的概率。数值越大(如 100),答案就越多样化,而数值越小(如 10),答案就越保守。

50

spring.ai.watsonx.ai.chat.options.decoding-method

解码是模型在生成的输出中选择标记的过程。

greedy

spring.ai.watsonx.ai.chat.options.max-new-tokens

设置 LLM 遵循的标记上限。

20

spring.ai.watsonx.ai.chat.options.min-new-tokens

设置 LLM 必须生成的令牌数量。

0

spring.ai.watsonx.ai.chat.options.stop-sequences

设置 LLM 停止的时间。(例如,["\n\n\n"]),那么当 LLM 产生三个连续的换行符时就会终止。在生成 Min tokens 参数中指定的标记数之前,停止序列将被忽略。

-

spring.ai.watsonx.ai.chat.options.repetition-penalty

设置对重复的惩罚力度。数值越大(如 1.8),对重复的惩罚力度就越大,而数值越小(如 1.1),惩罚力度就越宽松。

1.0

spring.ai.watsonx.ai.chat.options.random-seed

产生可重复的结果,每次设置相同的随机种子值。

randomly generated

spring.ai.watsonx.ai.chat.options.model

模型是要使用的 LLM 模型的标识符。

google/flan-ul2

运行时选项

WatsonxAiChatOptions.java 提供了模型配置,如使用的模型、温度、频率惩罚等。

启动时,可使用 WatsonxAiChatModel(api, options) 构造函数或 spring.ai.watsonxai.chat.options.* 属性配置默认选项。

在运行时,你可以通过向提示调用添加新的、针对特定请求的选项来覆盖默认选项。例如,覆盖特定请求的默认模型和温度:

ChatResponse response = chatModel.call(new Prompt("Generate the names of 5 famous pirates.",WatsonxAiChatOptions.builder().withTemperature(0.4).build()));

除了特定于模型的 WatsonxAiChatOptions.java 之外,你还可以使用通过 ChatOptionsBuilder#builder() 创建的便携式 ChatOptions实例。

 使用示例

public class MyClass {private final static String MODEL = "google/flan-ul2";private final WatsonxAiChatModel chatModel;@AutowiredMyClass(WatsonxAiChatModel chatModel) {this.chatModel = chatModel;}public String generate(String userInput) {WatsonxAiOptions options = WatsonxAiOptions.create().withModel(MODEL).withDecodingMethod("sample").withRandomSeed(1);Prompt prompt = new Prompt(new SystemMessage(userInput), options);var results = chatModel.call(prompt);var generatedText = results.getResult().getOutput().getContent();return generatedText;}public String generateStream(String userInput) {WatsonxAiOptions options = WatsonxAiOptions.create().withModel(MODEL).withDecodingMethod("greedy").withRandomSeed(2);Prompt prompt = new Prompt(new SystemMessage(userInput), options);var results = chatModel.stream(prompt).collectList().block(); // wait till the stream is resolved (completed)var generatedText = results.stream().map(generation -> generation.getResult().getOutput().getContent()).collect(Collectors.joining());return generatedText;}}

这篇关于Spring AI 第二讲 之 Chat Model API 第九节 watsonx.ai Chat的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045068

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S