【CS.AL】算法复杂度分析 —— 时间复杂度详解

2024-06-09 11:12

本文主要是介绍【CS.AL】算法复杂度分析 —— 时间复杂度详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 1 概述
    • 2 时间复杂度的详细分析
      • 2.1 常数时间复杂度(O(1))
      • 2.2 对数时间复杂度(O(log n))
      • 2.3 线性时间复杂度(O(n))
      • 2.4 线性对数时间复杂度(O(n log n))
      • 2.5 平方时间复杂度(O(n²))
      • 2.6 指数时间复杂度(O(2^n))
      • 2.7 阶乘时间复杂度(O(n!))
    • 3 用户体验中的时间复杂度 🔥
    • 4 计算时间复杂度的方法
    • 5 实际例子算法题
      • 5.1 二分查找算法
        • 步骤 1:分析代码
        • 步骤 2:分析循环
        • 步骤 3:处理递归
        • 步骤 4:计算总时间
        • 步骤 5:简化结果
      • 5.2 另一个例子:冒泡排序
        • 步骤 1:分析代码
        • 步骤 2:分析循环
        • 步骤 3:处理递归
        • 步骤 4:计算总时间
        • 步骤 5:简化结果
    • References

1 概述

时间复杂度是衡量一个算法执行效率的重要指标,它描述了算法在输入规模增长时,所需执行时间的增长趋势。时间复杂度通常用大O记号表示,比如O(1)、O(n)、O(n²)、O(log n)等。以下是一些常见的时间复杂度及其含义:

  1. O(1) - 常数时间复杂度

    • 这种算法在输入规模增大时,执行时间保持不变,不受输入规模影响。
    • 例如:数组访问、哈希表查找。
  2. O(log n) - 对数时间复杂度

    • 这种算法的执行时间随着输入规模的增大而对数级增长,常见于二分查找等。
    • 例如:二分查找、平衡二叉树查找。
  3. O(n) - 线性时间复杂度

    • 这种算法的执行时间与输入规模成正比,即输入规模翻倍,执行时间也翻倍。
    • 例如:线性查找、遍历数组。
  4. O(n log n) - 线性对数时间复杂度

    • 这种算法的执行时间是输入规模的线性乘以对数级增长,常见于高效排序算法如快速排序、归并排序等。
    • 例如:快速排序、归并排序。
  5. O(n²) - 平方时间复杂度

    • 这种算法的执行时间随着输入规模的平方级增长,常见于简单的排序算法如冒泡排序、选择排序等。
    • 例如:冒泡排序、选择排序。
  6. O(2^n) - 指数时间复杂度

    • 这种算法的执行时间随着输入规模的指数级增长,通常出现在解决复杂的递归问题中。
    • 例如:斐波那契数列递归解法、汉诺塔问题。
  7. O(n!) - 阶乘时间复杂度

    • 这种算法的执行时间随着输入规模的阶乘级增长,通常用于解决排列和组合问题。
    • 例如:旅行商问题的暴力解法。

2 时间复杂度的详细分析

2.1 常数时间复杂度(O(1))

在这种情况下,算法的执行时间不会随着输入规模的变化而变化。无论输入的规模多大,算法都只执行一个固定数量的操作。例如,访问数组中的某个元素,或者执行一个固定的算术运算。

2.2 对数时间复杂度(O(log n))

这种复杂度通常出现在需要“二分”处理问题的算法中。常见的例子是二分查找。在每一步中,算法将输入数据分成两半,只处理其中的一半,因此执行时间随着输入规模的对数级增长。

2.3 线性时间复杂度(O(n))

在这种情况下,算法的执行时间与输入规模成正比。每一个输入元素都会被处理一次。常见的例子包括简单的循环遍历数组、线性查找等。

2.4 线性对数时间复杂度(O(n log n))

这种复杂度通常出现在一些高效的排序算法中,如快速排序和归并排序。算法将输入数据分成较小的部分(通常是对数级),然后分别处理这些部分。

2.5 平方时间复杂度(O(n²))

这种复杂度通常出现在需要嵌套循环处理问题的算法中。每一个输入元素都会与每一个其他元素进行比较和处理。常见的例子包括冒泡排序、选择排序和插入排序。

2.6 指数时间复杂度(O(2^n))

这种复杂度通常出现在一些递归算法中,每一步递归都会生成多个子问题。常见的例子包括计算斐波那契数列的递归方法、汉诺塔问题等。

2.7 阶乘时间复杂度(O(n!))

这种复杂度通常出现在需要处理所有排列和组合问题的算法中。例如,旅行商问题的暴力解法就是一个阶乘时间复杂度的例子。

3 用户体验中的时间复杂度 🔥

#用户体验 #响应时间 #刹那 #须臾

根据《摩诃僧祗律》记载:一刹那为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜有三十须臾。可知:
1 须臾 = 24 小时 / 30 = 0.8 小时 = 48 分钟
1 罗预 = 1 须臾 / 20 = 48 分钟 / 20 = 2.4 分钟 = 2 分 24 秒
1 弹指 = 1 罗预 / 20 = 2.4 分钟 / 20 = 0.12 分钟 = 7.2 秒
1 瞬 = 1 弹指 / 20 = 7.2 秒 / 20 = 0.36 秒 = 360 毫秒
1 刹那 = 1 念 = 1 瞬 / 20 = 360 毫秒 / 20 = 18 毫秒

在实际的应用开发和用户体验中,响应时间对用户体验至关重要。以下是一些常见的响应时间要求和对应的描述:

  • 刹那(Moment):刹那可以认为是几十毫秒的响应时间。在理想状态下,页内操作应在刹那间解决,例如点击按钮、切换标签等,确保用户感受到即时的响应。

  • 瞬间(Instantaneous):瞬间的响应时间在几百毫秒以内。页面跳转应在瞬间解决,用户感觉不到延迟。

  • 弹指(Blink of an Eye):弹指级别的响应时间在几秒到十秒之间。对于复杂的操作,如上传大文件或处理复杂计算,响应时间较长时需要提供进度提示,告知用户操作正在进行中,并允许用户随时中止或取消。

4 计算时间复杂度的方法

为了理解和计算算法的时间复杂度,可以将其类比为一次探险,寻找算法的时间复杂度这个“宝藏”。以下是具体步骤:

  1. 分析代码:观察代码中的每一步操作,找到它们之间的关系,以及它们执行的频率。

  2. 分析循环:使用指南针(分析循环)判断方向,计算每一步操作的次数。

  3. 处理递归:注意递归调用的频率,计算递归的深度和每次递归的操作次数。

  4. 计算总时间:将所有操作次数加总,得到整个算法的时间复杂度。

  5. 简化结果:将复杂度表达式简化,保留最高次项,忽略常数项和低次项,得到最终的时间复杂度。

通过这些步骤,我们可以准确地计算出算法的时间复杂度,从而更好地评估和优化算法的性能。

5 实际例子算法题

让我们通过一个实际例子来演示如何计算算法的时间复杂度。

5.1 二分查找算法

int binarySearch(int arr[], int left, int right, int x) {while (left <= right) {int mid = left + (right - left) / 2;// 检查x是否在中间位置if (arr[mid] == x) return mid;// 如果x更大,忽略左半部分if (arr[mid] < x) left = mid + 1;// 如果x更小,忽略右半部分elseright = mid - 1;}// 元素不存在于数组中return -1;
}
步骤 1:分析代码
  • 初始化中间位置 mid = left + (right - left) / 2
  • 比较 arr[mid]x
  • 更新 leftright 以缩小搜索范围
步骤 2:分析循环
  • while循环条件为 left <= right,在每次迭代中,搜索范围减半。
步骤 3:处理递归

二分查找算法是一个迭代过程,没有递归调用。

步骤 4:计算总时间

在每次迭代中,搜索范围减半,这意味着我们最多会执行 log₂n 次迭代,其中 n 是数组的长度。

步骤 5:简化结果

忽略常数项和低次项,我们得到时间复杂度为 O(log n)

5.2 另一个例子:冒泡排序

void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {// 交换 arr[j] 和 arr[j+1]int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}
}
步骤 1:分析代码
  • 两个嵌套的for循环
  • 内循环中,每次迭代比较并交换相邻的元素
步骤 2:分析循环
  • 外循环执行 n-1
  • 内循环执行 n-i-1 次,其中 i 是外循环的当前迭代次数
步骤 3:处理递归

冒泡排序是一个迭代过程,没有递归调用。

步骤 4:计算总时间

总的执行次数为:∑i=0n-1​(n−i−1)=n(n−1)/2

步骤 5:简化结果

忽略常数项和低次项,我们得到时间复杂度为 O(n²)

References

这篇关于【CS.AL】算法复杂度分析 —— 时间复杂度详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045013

相关文章

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot 事务详解(事务传播行为、事务属性)

《SpringBoot事务详解(事务传播行为、事务属性)》SpringBoot提供了强大的事务管理功能,通过@Transactional注解可以方便地配置事务的传播行为和属性,本文将详细介绍Spr... 目录Spring Boot 事务详解引言声明式事务管理示例编程式事务管理示例事务传播行为1. REQUI

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

MySQL中的事务隔离级别详解

《MySQL中的事务隔离级别详解》在MySQL中,事务(Transaction)是一个执行单元,它要么完全执行,要么完全回滚,以保证数据的完整性和一致性,下面给大家介绍MySQL中的事务隔离级别详解,... 目录一、事务并发问题二、mysql 事务隔离级别1. READ UNCOMMITTED(读未提交)2

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

Vue中插槽slot的使用示例详解

《Vue中插槽slot的使用示例详解》:本文主要介绍Vue中插槽slot的使用示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、插槽是什么二、插槽分类2.1 匿名插槽2.2 具名插槽2.3 作用域插槽三、插槽的基本使用3.1 匿名插槽

springboot+vue项目怎么解决跨域问题详解

《springboot+vue项目怎么解决跨域问题详解》:本文主要介绍springboot+vue项目怎么解决跨域问题的相关资料,包括前端代理、后端全局配置CORS、注解配置和Nginx反向代理,... 目录1. 前端代理(开发环境推荐)2. 后端全局配置 CORS(生产环境推荐)3. 后端注解配置(按接口

python利用backoff实现异常自动重试详解

《python利用backoff实现异常自动重试详解》backoff是一个用于实现重试机制的Python库,通过指数退避或其他策略自动重试失败的操作,下面小编就来和大家详细讲讲如何利用backoff实... 目录1. backoff 库简介2. on_exception 装饰器的原理2.1 核心逻辑2.2

QT6中绘制UI的两种方法详解与示例代码

《QT6中绘制UI的两种方法详解与示例代码》Qt6提供了两种主要的UI绘制技术:​​QML(QtMeta-ObjectLanguage)​​和​​C++Widgets​​,这两种技术各有优势,适用于不... 目录一、QML 技术详解1.1 QML 简介1.2 QML 的核心概念1.3 QML 示例:简单按钮