Hadoop词频统计(二)之本地模式运行

2024-06-09 10:38

本文主要是介绍Hadoop词频统计(二)之本地模式运行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

想要在windows上以本地模式运行hadoop就必须要在windows上配置好hadoop的本地运行环境。我们需要下载编译好的hadoop二进制包。

下载地址如下:

链接:http://pan.baidu.com/s/1skE4fQt 密码:or48

下载完成后配置windows环境变量:

HADOOP_HOME=C:\Program Files (x86)\hadoop-2.6.0

PATH=%PATH%:%HADOOP_HOME%\bin

map:

package cn.hadoop.mr;import java.io.IOException;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)throws IOException, InterruptedException {// TODO Auto-generated method stubString line = value.toString();String[] words = StringUtils.split(line,' ');for(String word : words) {context.write(new Text(word), new LongWritable(1));}}
}
reduce:

package cn.hadoop.mr;import java.io.IOException;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable> {@Overrideprotected void reduce(Text key, Iterable<LongWritable> values,Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {long count = 0;for(LongWritable value : values) {count += value.get();}context.write(key, new LongWritable(count));}
}

run:

package cn.hadoop.mr;import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WCRunner {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration conf = new Configuration();Job wcjob = Job.getInstance(conf);wcjob.setJarByClass(WCRunner.class);wcjob.setMapperClass(WCMapper.class);wcjob.setReducerClass(WCReducer.class);wcjob.setOutputKeyClass(Text.class);wcjob.setOutputValueClass(LongWritable.class);wcjob.setMapOutputKeyClass(Text.class);wcjob.setMapOutputValueClass(LongWritable.class);FileInputFormat.setInputPaths(wcjob, "E:/wc/inputdata/");FileOutputFormat.setOutputPath(wcjob, new Path("E:/wc/output/"));wcjob.waitForCompletion(true);}
}

缺少jar包的话就把C:\Program Files (x86)\hadoop-2.6.0\share\hadoop文件夹下面的所有jar包引入进项目。

然后在eclipse中直接以java application方式运行main方法即可。

输出结果如下:

2016-07-25 15:47:06,565 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1049)) - session.id is deprecated. Instead, use dfs.metrics.session-id
2016-07-25 15:47:06,569 INFO  [main] jvm.JvmMetrics (JvmMetrics.java:init(76)) - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-07-25 15:47:06,751 WARN  [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(153)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-07-25 15:47:06,752 WARN  [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(261)) - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2016-07-25 15:47:06,796 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(281)) - Total input paths to process : 1
2016-07-25 15:47:06,836 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(494)) - number of splits:1
2016-07-25 15:47:06,910 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(583)) - Submitting tokens for job: job_local1228851727_0001
2016-07-25 15:47:07,087 INFO  [main] mapreduce.Job (Job.java:submit(1300)) - The url to track the job: http://localhost:8080/
2016-07-25 15:47:07,088 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) - Running job: job_local1228851727_0001
2016-07-25 15:47:07,089 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:createOutputCommitter(471)) - OutputCommitter set in config null
2016-07-25 15:47:07,094 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:createOutputCommitter(489)) - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-07-25 15:47:07,131 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(448)) - Waiting for map tasks
2016-07-25 15:47:07,132 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:run(224)) - Starting task: attempt_local1228851727_0001_m_000000_0
2016-07-25 15:47:07,156 INFO  [LocalJobRunner Map Task Executor #0] util.ProcfsBasedProcessTree (ProcfsBasedProcessTree.java:isAvailable(181)) - ProcfsBasedProcessTree currently is supported only on Linux.
2016-07-25 15:47:07,182 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:initialize(587)) -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@6db06d7d
2016-07-25 15:47:07,185 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:runNewMapper(753)) - Processing split: file:/E:/wc/inputdata/in.dat:0+78
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:setEquator(1202)) - (EQUATOR) 0 kvi 26214396(104857584)
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(995)) - mapreduce.task.io.sort.mb: 100
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(996)) - soft limit at 83886080
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(997)) - bufstart = 0; bufvoid = 104857600
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(998)) - kvstart = 26214396; length = 6553600
2016-07-25 15:47:07,228 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:createSortingCollector(402)) - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1457)) - Starting flush of map output
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1475)) - Spilling map output
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1476)) - bufstart = 0; bufend = 174; bufvoid = 104857600
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1478)) - kvstart = 26214396(104857584); kvend = 26214352(104857408); length = 45/6553600
2016-07-25 15:47:07,243 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:sortAndSpill(1660)) - Finished spill 0
2016-07-25 15:47:07,248 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:done(1001)) - Task:attempt_local1228851727_0001_m_000000_0 is done. And is in the process of committing
2016-07-25 15:47:07,256 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - map
2016-07-25 15:47:07,256 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:sendDone(1121)) - Task 'attempt_local1228851727_0001_m_000000_0' done.
2016-07-25 15:47:07,256 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:run(249)) - Finishing task: attempt_local1228851727_0001_m_000000_0
2016-07-25 15:47:07,256 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(456)) - map task executor complete.
2016-07-25 15:47:07,259 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(448)) - Waiting for reduce tasks
2016-07-25 15:47:07,259 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:run(302)) - Starting task: attempt_local1228851727_0001_r_000000_0
2016-07-25 15:47:07,266 INFO  [pool-3-thread-1] util.ProcfsBasedProcessTree (ProcfsBasedProcessTree.java:isAvailable(181)) - ProcfsBasedProcessTree currently is supported only on Linux.
2016-07-25 15:47:07,294 INFO  [pool-3-thread-1] mapred.Task (Task.java:initialize(587)) -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@57baec0e
2016-07-25 15:47:07,297 INFO  [pool-3-thread-1] mapred.ReduceTask (ReduceTask.java:run(362)) - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@7c165ec0
2016-07-25 15:47:07,306 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:<init>(196)) - MergerManager: memoryLimit=1503238528, maxSingleShuffleLimit=375809632, mergeThreshold=992137472, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-07-25 15:47:07,308 INFO  [EventFetcher for fetching Map Completion Events] reduce.EventFetcher (EventFetcher.java:run(61)) - attempt_local1228851727_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-07-25 15:47:07,334 INFO  [localfetcher#1] reduce.LocalFetcher (LocalFetcher.java:copyMapOutput(141)) - localfetcher#1 about to shuffle output of map attempt_local1228851727_0001_m_000000_0 decomp: 200 len: 204 to MEMORY
2016-07-25 15:47:07,338 INFO  [localfetcher#1] reduce.InMemoryMapOutput (InMemoryMapOutput.java:shuffle(100)) - Read 200 bytes from map-output for attempt_local1228851727_0001_m_000000_0
2016-07-25 15:47:07,361 INFO  [localfetcher#1] reduce.MergeManagerImpl (MergeManagerImpl.java:closeInMemoryFile(314)) - closeInMemoryFile -> map-output of size: 200, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->200
2016-07-25 15:47:07,362 INFO  [EventFetcher for fetching Map Completion Events] reduce.EventFetcher (EventFetcher.java:run(76)) - EventFetcher is interrupted.. Returning
2016-07-25 15:47:07,363 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-25 15:47:07,363 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(674)) - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-07-25 15:47:07,369 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(597)) - Merging 1 sorted segments
2016-07-25 15:47:07,370 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(696)) - Down to the last merge-pass, with 1 segments left of total size: 193 bytes
2016-07-25 15:47:07,371 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(751)) - Merged 1 segments, 200 bytes to disk to satisfy reduce memory limit
2016-07-25 15:47:07,372 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(781)) - Merging 1 files, 204 bytes from disk
2016-07-25 15:47:07,373 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(796)) - Merging 0 segments, 0 bytes from memory into reduce
2016-07-25 15:47:07,373 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(597)) - Merging 1 sorted segments
2016-07-25 15:47:07,373 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(696)) - Down to the last merge-pass, with 1 segments left of total size: 193 bytes
2016-07-25 15:47:07,374 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-25 15:47:07,377 INFO  [pool-3-thread-1] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1049)) - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-07-25 15:47:07,385 INFO  [pool-3-thread-1] mapred.Task (Task.java:done(1001)) - Task:attempt_local1228851727_0001_r_000000_0 is done. And is in the process of committing
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.Task (Task.java:commit(1162)) - Task attempt_local1228851727_0001_r_000000_0 is allowed to commit now
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] output.FileOutputCommitter (FileOutputCommitter.java:commitTask(439)) - Saved output of task 'attempt_local1228851727_0001_r_000000_0' to file:/E:/wc/output/_temporary/0/task_local1228851727_0001_r_000000
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - reduce > reduce
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.Task (Task.java:sendDone(1121)) - Task 'attempt_local1228851727_0001_r_000000_0' done.
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:run(325)) - Finishing task: attempt_local1228851727_0001_r_000000_0
2016-07-25 15:47:07,388 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(456)) - reduce task executor complete.
2016-07-25 15:47:08,090 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1366)) - Job job_local1228851727_0001 running in uber mode : false
2016-07-25 15:47:08,094 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1373)) -  map 100% reduce 100%
2016-07-25 15:47:08,097 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1384)) - Job job_local1228851727_0001 completed successfully
2016-07-25 15:47:08,128 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1391)) - Counters: 33File System CountersFILE: Number of bytes read=890FILE: Number of bytes written=525466FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0Map-Reduce FrameworkMap input records=6Map output records=12Map output bytes=174Map output materialized bytes=204Input split bytes=93Combine input records=0Combine output records=0Reduce input groups=5Reduce shuffle bytes=204Reduce input records=12Reduce output records=5Spilled Records=24Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=0CPU time spent (ms)=0Physical memory (bytes) snapshot=0Virtual memory (bytes) snapshot=0Total committed heap usage (bytes)=504758272Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=78File Output Format Counters Bytes Written=56
文件内容如下:

haha    4
hehe    2
heiheihei    2
lalala    1
lololo    3


这篇关于Hadoop词频统计(二)之本地模式运行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044949

相关文章

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Java -jar命令如何运行外部依赖JAR包

《Java-jar命令如何运行外部依赖JAR包》在Java应用部署中,java-jar命令是启动可执行JAR包的标准方式,但当应用需要依赖外部JAR文件时,直接使用java-jar会面临类加载困... 目录引言:外部依赖JAR的必要性一、问题本质:类加载机制的限制1. Java -jar的默认行为2. 类加

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

eclipse如何运行springboot项目

《eclipse如何运行springboot项目》:本文主要介绍eclipse如何运行springboot项目问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目js录当在eclipse启动spring boot项目时出现问题解决办法1.通过cmd命令行2.在ecl

Maven项目打包时添加本地Jar包的操作步骤

《Maven项目打包时添加本地Jar包的操作步骤》在Maven项目开发中,我们经常会遇到需要引入本地Jar包的场景,比如使用未发布到中央仓库的第三方库或者处理版本冲突的依赖项,本文将详细介绍如何通过M... 目录一、适用场景说明​二、核心操作命令​1. 命令格式解析​2. 实战案例演示​三、项目配置步骤​1

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现