Hadoop词频统计(二)之本地模式运行

2024-06-09 10:38

本文主要是介绍Hadoop词频统计(二)之本地模式运行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

想要在windows上以本地模式运行hadoop就必须要在windows上配置好hadoop的本地运行环境。我们需要下载编译好的hadoop二进制包。

下载地址如下:

链接:http://pan.baidu.com/s/1skE4fQt 密码:or48

下载完成后配置windows环境变量:

HADOOP_HOME=C:\Program Files (x86)\hadoop-2.6.0

PATH=%PATH%:%HADOOP_HOME%\bin

map:

package cn.hadoop.mr;import java.io.IOException;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)throws IOException, InterruptedException {// TODO Auto-generated method stubString line = value.toString();String[] words = StringUtils.split(line,' ');for(String word : words) {context.write(new Text(word), new LongWritable(1));}}
}
reduce:

package cn.hadoop.mr;import java.io.IOException;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable> {@Overrideprotected void reduce(Text key, Iterable<LongWritable> values,Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {long count = 0;for(LongWritable value : values) {count += value.get();}context.write(key, new LongWritable(count));}
}

run:

package cn.hadoop.mr;import java.io.IOException;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WCRunner {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration conf = new Configuration();Job wcjob = Job.getInstance(conf);wcjob.setJarByClass(WCRunner.class);wcjob.setMapperClass(WCMapper.class);wcjob.setReducerClass(WCReducer.class);wcjob.setOutputKeyClass(Text.class);wcjob.setOutputValueClass(LongWritable.class);wcjob.setMapOutputKeyClass(Text.class);wcjob.setMapOutputValueClass(LongWritable.class);FileInputFormat.setInputPaths(wcjob, "E:/wc/inputdata/");FileOutputFormat.setOutputPath(wcjob, new Path("E:/wc/output/"));wcjob.waitForCompletion(true);}
}

缺少jar包的话就把C:\Program Files (x86)\hadoop-2.6.0\share\hadoop文件夹下面的所有jar包引入进项目。

然后在eclipse中直接以java application方式运行main方法即可。

输出结果如下:

2016-07-25 15:47:06,565 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1049)) - session.id is deprecated. Instead, use dfs.metrics.session-id
2016-07-25 15:47:06,569 INFO  [main] jvm.JvmMetrics (JvmMetrics.java:init(76)) - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-07-25 15:47:06,751 WARN  [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(153)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-07-25 15:47:06,752 WARN  [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(261)) - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2016-07-25 15:47:06,796 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(281)) - Total input paths to process : 1
2016-07-25 15:47:06,836 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(494)) - number of splits:1
2016-07-25 15:47:06,910 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(583)) - Submitting tokens for job: job_local1228851727_0001
2016-07-25 15:47:07,087 INFO  [main] mapreduce.Job (Job.java:submit(1300)) - The url to track the job: http://localhost:8080/
2016-07-25 15:47:07,088 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) - Running job: job_local1228851727_0001
2016-07-25 15:47:07,089 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:createOutputCommitter(471)) - OutputCommitter set in config null
2016-07-25 15:47:07,094 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:createOutputCommitter(489)) - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-07-25 15:47:07,131 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(448)) - Waiting for map tasks
2016-07-25 15:47:07,132 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:run(224)) - Starting task: attempt_local1228851727_0001_m_000000_0
2016-07-25 15:47:07,156 INFO  [LocalJobRunner Map Task Executor #0] util.ProcfsBasedProcessTree (ProcfsBasedProcessTree.java:isAvailable(181)) - ProcfsBasedProcessTree currently is supported only on Linux.
2016-07-25 15:47:07,182 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:initialize(587)) -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@6db06d7d
2016-07-25 15:47:07,185 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:runNewMapper(753)) - Processing split: file:/E:/wc/inputdata/in.dat:0+78
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:setEquator(1202)) - (EQUATOR) 0 kvi 26214396(104857584)
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(995)) - mapreduce.task.io.sort.mb: 100
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(996)) - soft limit at 83886080
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(997)) - bufstart = 0; bufvoid = 104857600
2016-07-25 15:47:07,225 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(998)) - kvstart = 26214396; length = 6553600
2016-07-25 15:47:07,228 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:createSortingCollector(402)) - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1457)) - Starting flush of map output
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1475)) - Spilling map output
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1476)) - bufstart = 0; bufend = 174; bufvoid = 104857600
2016-07-25 15:47:07,234 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1478)) - kvstart = 26214396(104857584); kvend = 26214352(104857408); length = 45/6553600
2016-07-25 15:47:07,243 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:sortAndSpill(1660)) - Finished spill 0
2016-07-25 15:47:07,248 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:done(1001)) - Task:attempt_local1228851727_0001_m_000000_0 is done. And is in the process of committing
2016-07-25 15:47:07,256 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - map
2016-07-25 15:47:07,256 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:sendDone(1121)) - Task 'attempt_local1228851727_0001_m_000000_0' done.
2016-07-25 15:47:07,256 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:run(249)) - Finishing task: attempt_local1228851727_0001_m_000000_0
2016-07-25 15:47:07,256 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(456)) - map task executor complete.
2016-07-25 15:47:07,259 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(448)) - Waiting for reduce tasks
2016-07-25 15:47:07,259 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:run(302)) - Starting task: attempt_local1228851727_0001_r_000000_0
2016-07-25 15:47:07,266 INFO  [pool-3-thread-1] util.ProcfsBasedProcessTree (ProcfsBasedProcessTree.java:isAvailable(181)) - ProcfsBasedProcessTree currently is supported only on Linux.
2016-07-25 15:47:07,294 INFO  [pool-3-thread-1] mapred.Task (Task.java:initialize(587)) -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@57baec0e
2016-07-25 15:47:07,297 INFO  [pool-3-thread-1] mapred.ReduceTask (ReduceTask.java:run(362)) - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@7c165ec0
2016-07-25 15:47:07,306 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:<init>(196)) - MergerManager: memoryLimit=1503238528, maxSingleShuffleLimit=375809632, mergeThreshold=992137472, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-07-25 15:47:07,308 INFO  [EventFetcher for fetching Map Completion Events] reduce.EventFetcher (EventFetcher.java:run(61)) - attempt_local1228851727_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-07-25 15:47:07,334 INFO  [localfetcher#1] reduce.LocalFetcher (LocalFetcher.java:copyMapOutput(141)) - localfetcher#1 about to shuffle output of map attempt_local1228851727_0001_m_000000_0 decomp: 200 len: 204 to MEMORY
2016-07-25 15:47:07,338 INFO  [localfetcher#1] reduce.InMemoryMapOutput (InMemoryMapOutput.java:shuffle(100)) - Read 200 bytes from map-output for attempt_local1228851727_0001_m_000000_0
2016-07-25 15:47:07,361 INFO  [localfetcher#1] reduce.MergeManagerImpl (MergeManagerImpl.java:closeInMemoryFile(314)) - closeInMemoryFile -> map-output of size: 200, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->200
2016-07-25 15:47:07,362 INFO  [EventFetcher for fetching Map Completion Events] reduce.EventFetcher (EventFetcher.java:run(76)) - EventFetcher is interrupted.. Returning
2016-07-25 15:47:07,363 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-25 15:47:07,363 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(674)) - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-07-25 15:47:07,369 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(597)) - Merging 1 sorted segments
2016-07-25 15:47:07,370 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(696)) - Down to the last merge-pass, with 1 segments left of total size: 193 bytes
2016-07-25 15:47:07,371 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(751)) - Merged 1 segments, 200 bytes to disk to satisfy reduce memory limit
2016-07-25 15:47:07,372 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(781)) - Merging 1 files, 204 bytes from disk
2016-07-25 15:47:07,373 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(796)) - Merging 0 segments, 0 bytes from memory into reduce
2016-07-25 15:47:07,373 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(597)) - Merging 1 sorted segments
2016-07-25 15:47:07,373 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(696)) - Down to the last merge-pass, with 1 segments left of total size: 193 bytes
2016-07-25 15:47:07,374 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-25 15:47:07,377 INFO  [pool-3-thread-1] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1049)) - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-07-25 15:47:07,385 INFO  [pool-3-thread-1] mapred.Task (Task.java:done(1001)) - Task:attempt_local1228851727_0001_r_000000_0 is done. And is in the process of committing
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.Task (Task.java:commit(1162)) - Task attempt_local1228851727_0001_r_000000_0 is allowed to commit now
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] output.FileOutputCommitter (FileOutputCommitter.java:commitTask(439)) - Saved output of task 'attempt_local1228851727_0001_r_000000_0' to file:/E:/wc/output/_temporary/0/task_local1228851727_0001_r_000000
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - reduce > reduce
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.Task (Task.java:sendDone(1121)) - Task 'attempt_local1228851727_0001_r_000000_0' done.
2016-07-25 15:47:07,387 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:run(325)) - Finishing task: attempt_local1228851727_0001_r_000000_0
2016-07-25 15:47:07,388 INFO  [Thread-4] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(456)) - reduce task executor complete.
2016-07-25 15:47:08,090 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1366)) - Job job_local1228851727_0001 running in uber mode : false
2016-07-25 15:47:08,094 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1373)) -  map 100% reduce 100%
2016-07-25 15:47:08,097 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1384)) - Job job_local1228851727_0001 completed successfully
2016-07-25 15:47:08,128 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1391)) - Counters: 33File System CountersFILE: Number of bytes read=890FILE: Number of bytes written=525466FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0Map-Reduce FrameworkMap input records=6Map output records=12Map output bytes=174Map output materialized bytes=204Input split bytes=93Combine input records=0Combine output records=0Reduce input groups=5Reduce shuffle bytes=204Reduce input records=12Reduce output records=5Spilled Records=24Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=0CPU time spent (ms)=0Physical memory (bytes) snapshot=0Virtual memory (bytes) snapshot=0Total committed heap usage (bytes)=504758272Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=78File Output Format Counters Bytes Written=56
文件内容如下:

haha    4
hehe    2
heiheihei    2
lalala    1
lololo    3


这篇关于Hadoop词频统计(二)之本地模式运行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044949

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

C#和Unity中的中介者模式使用方式

《C#和Unity中的中介者模式使用方式》中介者模式通过中介者封装对象交互,降低耦合度,集中控制逻辑,适用于复杂系统组件交互场景,C#中可用事件、委托或MediatR实现,提升可维护性与灵活性... 目录C#中的中介者模式详解一、中介者模式的基本概念1. 定义2. 组成要素3. 模式结构二、中介者模式的特点

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一