titanic乘客简单的数据分析(matplotlib和seaborn 的使用)

2024-06-08 13:08

本文主要是介绍titanic乘客简单的数据分析(matplotlib和seaborn 的使用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据来源:

kaggle的Titanic 生存模型:titanic_train.csv。

引入的库:

import numpy as np
import pandas as pd
import sys
reload(sys)
sys.setdefaultencoding('gbk')
import matplotlib.pyplot as plt
import seaborn as sns

数据分析:

读取数据:
train_data=pd.read_csv("titanic_train.csv")
train_data['Survived'].value_counts().plot.pie(autopct = '%1.2f%%')            #绘制存活的比例
plt.show()

缺失值处理:
  1. 用众数填补Embarked(上船的地点):
    train_data.Embarked[train_data.Embarked.isnull()] = train_data.Embarked.dropna().mode().values
    
  2. 使用随机森林预测Age的缺值:
    from sklearn.ensemble import RandomForestRegressor#choose training data to predict age
    age_df = train_data[['Age','Survived','Fare', 'Parch', 'SibSp', 'Pclass']]
    age_df_notnull = age_df.loc[(train_data['Age'].notnull())]
    age_df_isnull = age_df.loc[(train_data['Age'].isnull())]
    X = age_df_notnull.values[:,1:]
    Y = age_df_notnull.values[:,0]
    # use RandomForestRegression to train data
    RFR = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
    RFR.fit(X,Y)
    predictAges = RFR.predict(age_df_isnull.values[:,1:])
    train_data.loc[train_data['Age'].isnull(), ['Age']]= predictAges
    
  3. 也可以删除一些不重要的属性值.

分析数据:

  1. 性别与存活的关系:
    train_data.groupby(['Sex','Survived'])['Survived'].count()
    train_data[['Sex','Survived']].groupby(['Sex']).mean().plot.bar()
    

    男性存活率是18.9%,女性的存活率是74.2%

  2. 船舱等级和生存的关系:
    train_data.groupby(['Pclass','Survived'])['Pclass'].count()
    train_data[['Pclass','Survived']].groupby(['Pclass']).mean().plot.bar()
    

    不同等级船舱的男女生存率:
    train_data.groupby(['Pclass','Survived'])['Pclass'].count()
    train_data[['Pclass','Survived']].groupby(['Pclass']).mean().plot.bar()
    train_data[['Sex','Pclass','Survived']].groupby(['Pclass','Sex']).mean().plot.bar()
    
  3. 年龄和生存的关系:
    fig, ax = plt.subplots(1, 2, figsize = (18, 8))
    sns.violinplot("Pclass", "Age", hue="Survived", data=train_data, split=True, ax=ax[0])
    ax[0].set_title('Pclass and Age vs Survived')
    ax[0].set_yticks(range(0, 110, 10))sns.violinplot("Sex", "Age", hue="Survived", data=train_data, split=True, ax=ax[1])
    ax[1].set_title('Sex and Age vs Survived')
    ax[1].set_yticks(range(0, 110, 10))
    

    分析总体的年龄分布:
    plt.figure(figsize=(12,5))
    plt.subplot(121)
    train_data['Age'].hist(bins=70)
    plt.xlabel('Age')
    plt.ylabel('Num')plt.subplot(122)
    train_data.boxplot(column='Age', showfliers=False)

    facet=sns.FacetGrid(train_data, hue="Survived",aspect=4)
    facet.map(sns.kdeplot,'Age',shade= True)
    facet.set(xlim=(0, train_data['Age'].max()))
    facet.add_legend()
    


fig, axis1 = plt.subplots(1,1,figsize=(18,4))
train_data["Age_int"] = train_data["Age"].astype(int)
average_age = train_data[["Age_int", "Survived"]].groupby(['Age_int'],as_index=False).mean()
sns.barplot(x='Age_int', y='Survived', data=average_age)

为什么妇女儿童这类“弱者”反而更能生存?

根据泰坦尼克号唯一存活副船长查尔斯·莱特勒,事后描述,面对沉船灾难时,船长爱德华·约翰·史密斯(Edward J. Smith)在最后的时刻下命令,命令先让妇女和儿童上救生艇,许多乘客显得十分平静,一些人则拒绝与家人分开。

作为男性,明明是群体中最具有强壮的体魄,又有相对更丰富的生存经验,怎么反而在这场事故中就成了生存机率最低的?

作为男人、作为孩子的父亲、作为妻子的丈夫,肩头上扛的一边感情,另一边是责任,面对灾难是作出了何种抉择,其实不用多说,看一段回忆录:

一名叫那瓦特列的法国商人把两个孩子送上了救生艇,委托几名妇女代为照顾,自己却拒绝上船。

两个儿子得救后,世界各地的报纸纷纷登载两个孩子的照片,直到他们的母亲从照片上认出了他们。不幸的是,孩子们永远失去了父亲。

新婚燕尔的丽德帕丝同丈夫去美国度蜜月,她死死抱住丈夫不愿独自逃生。

丈夫在万般无奈中一拳将她打昏。丽德帕丝醒来时,她已在一条在海上漂浮的救生艇上了。

此后,她终生未再嫁,以此怀念亡夫。


参考链接:
https://blog.csdn.net/Koala_Tree/article/details/78725881
https://www.jianshu.com/p/9a5bce0de13f




这篇关于titanic乘客简单的数据分析(matplotlib和seaborn 的使用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042268

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时