titanic乘客简单的数据分析(matplotlib和seaborn 的使用)

2024-06-08 13:08

本文主要是介绍titanic乘客简单的数据分析(matplotlib和seaborn 的使用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据来源:

kaggle的Titanic 生存模型:titanic_train.csv。

引入的库:

import numpy as np
import pandas as pd
import sys
reload(sys)
sys.setdefaultencoding('gbk')
import matplotlib.pyplot as plt
import seaborn as sns

数据分析:

读取数据:
train_data=pd.read_csv("titanic_train.csv")
train_data['Survived'].value_counts().plot.pie(autopct = '%1.2f%%')            #绘制存活的比例
plt.show()

缺失值处理:
  1. 用众数填补Embarked(上船的地点):
    train_data.Embarked[train_data.Embarked.isnull()] = train_data.Embarked.dropna().mode().values
    
  2. 使用随机森林预测Age的缺值:
    from sklearn.ensemble import RandomForestRegressor#choose training data to predict age
    age_df = train_data[['Age','Survived','Fare', 'Parch', 'SibSp', 'Pclass']]
    age_df_notnull = age_df.loc[(train_data['Age'].notnull())]
    age_df_isnull = age_df.loc[(train_data['Age'].isnull())]
    X = age_df_notnull.values[:,1:]
    Y = age_df_notnull.values[:,0]
    # use RandomForestRegression to train data
    RFR = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
    RFR.fit(X,Y)
    predictAges = RFR.predict(age_df_isnull.values[:,1:])
    train_data.loc[train_data['Age'].isnull(), ['Age']]= predictAges
    
  3. 也可以删除一些不重要的属性值.

分析数据:

  1. 性别与存活的关系:
    train_data.groupby(['Sex','Survived'])['Survived'].count()
    train_data[['Sex','Survived']].groupby(['Sex']).mean().plot.bar()
    

    男性存活率是18.9%,女性的存活率是74.2%

  2. 船舱等级和生存的关系:
    train_data.groupby(['Pclass','Survived'])['Pclass'].count()
    train_data[['Pclass','Survived']].groupby(['Pclass']).mean().plot.bar()
    

    不同等级船舱的男女生存率:
    train_data.groupby(['Pclass','Survived'])['Pclass'].count()
    train_data[['Pclass','Survived']].groupby(['Pclass']).mean().plot.bar()
    train_data[['Sex','Pclass','Survived']].groupby(['Pclass','Sex']).mean().plot.bar()
    
  3. 年龄和生存的关系:
    fig, ax = plt.subplots(1, 2, figsize = (18, 8))
    sns.violinplot("Pclass", "Age", hue="Survived", data=train_data, split=True, ax=ax[0])
    ax[0].set_title('Pclass and Age vs Survived')
    ax[0].set_yticks(range(0, 110, 10))sns.violinplot("Sex", "Age", hue="Survived", data=train_data, split=True, ax=ax[1])
    ax[1].set_title('Sex and Age vs Survived')
    ax[1].set_yticks(range(0, 110, 10))
    

    分析总体的年龄分布:
    plt.figure(figsize=(12,5))
    plt.subplot(121)
    train_data['Age'].hist(bins=70)
    plt.xlabel('Age')
    plt.ylabel('Num')plt.subplot(122)
    train_data.boxplot(column='Age', showfliers=False)

    facet=sns.FacetGrid(train_data, hue="Survived",aspect=4)
    facet.map(sns.kdeplot,'Age',shade= True)
    facet.set(xlim=(0, train_data['Age'].max()))
    facet.add_legend()
    


fig, axis1 = plt.subplots(1,1,figsize=(18,4))
train_data["Age_int"] = train_data["Age"].astype(int)
average_age = train_data[["Age_int", "Survived"]].groupby(['Age_int'],as_index=False).mean()
sns.barplot(x='Age_int', y='Survived', data=average_age)

为什么妇女儿童这类“弱者”反而更能生存?

根据泰坦尼克号唯一存活副船长查尔斯·莱特勒,事后描述,面对沉船灾难时,船长爱德华·约翰·史密斯(Edward J. Smith)在最后的时刻下命令,命令先让妇女和儿童上救生艇,许多乘客显得十分平静,一些人则拒绝与家人分开。

作为男性,明明是群体中最具有强壮的体魄,又有相对更丰富的生存经验,怎么反而在这场事故中就成了生存机率最低的?

作为男人、作为孩子的父亲、作为妻子的丈夫,肩头上扛的一边感情,另一边是责任,面对灾难是作出了何种抉择,其实不用多说,看一段回忆录:

一名叫那瓦特列的法国商人把两个孩子送上了救生艇,委托几名妇女代为照顾,自己却拒绝上船。

两个儿子得救后,世界各地的报纸纷纷登载两个孩子的照片,直到他们的母亲从照片上认出了他们。不幸的是,孩子们永远失去了父亲。

新婚燕尔的丽德帕丝同丈夫去美国度蜜月,她死死抱住丈夫不愿独自逃生。

丈夫在万般无奈中一拳将她打昏。丽德帕丝醒来时,她已在一条在海上漂浮的救生艇上了。

此后,她终生未再嫁,以此怀念亡夫。


参考链接:
https://blog.csdn.net/Koala_Tree/article/details/78725881
https://www.jianshu.com/p/9a5bce0de13f




这篇关于titanic乘客简单的数据分析(matplotlib和seaborn 的使用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042268

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1