python数据分析-心脏衰竭分析与预测

2024-06-08 11:52

本文主要是介绍python数据分析-心脏衰竭分析与预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

研究背景

人的心脏有四个瓣膜,主动脉银、二尖、肺动脉和三尖源 不管是那一个膜发生了病变,都会导致心脏内的血流受到影响,这就是通常所说的心脏期膜病,很多是需要通过手术的方式进行改善的。随着人口老龄化的加剧,,心脏期膜病是我国最常见的心血管疾病之-,需要接受心脏瓣膜手术治疗的患者数量逐年拳升。心脏期膜手术是对病变的心脏辨膜所进行的外科手术,一般包括心脏期的置换和修复手术,心期手术是在外科技术的基础上,对病变的心脏期膜所进行的手术,可以改善患者心脏期聘狭窄或关闭不全的现象。不过心脏瓣膜病手术可能会引发机械瓣并发症,导致心功能变差,严重的还会直接造成患者死亡。

实验分析

首先导入基本的数据分析包

# import data handling libsimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# import modelsfrom sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm  import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifierimport warnings
warnings.filterwarnings('ignore')

读取数据

# Importing datasetdf = pd.read_csv('dataset.csv')

展示数据集和结构

df.head()
rows, columns = df.shapeprint(f"Number Of Rows : {rows}")
print(f"Number Of Columns : {columns}")

 

数据集特征结构

df.info()

描述性分析

df.describe()

查看每列的唯一值的数量 

df.nunique()

查看下相关系数并且画出热力图

plt.figure(figsize=(10, 8))
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='Blues')

 查看缺失值

df.isnull().sum()

 接下来进行特征选择

plt.rcParams['figure.figsize']=15,6 
sns.set_style("darkgrid")x = df.iloc[:, :-1]
y = df.iloc[:,-1]from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
model = ExtraTreesClassifier()
model.fit(x,y)
print(model.feature_importances_) 
feat_importances = pd.Series(model.feature_importances_, index=x.columns)
feat_importances.nlargest(12).plot(kind='barh', color='teal')
plt.show()

检查一下离群值

sns.boxplot(x = df.ejection_fraction, color='teal')
plt.show()

 

可以发现有两个离群值

接下来对特征进行可视化 

# Distribution of Ageimport plotly.graph_objects as gofig = go.Figure()
fig.add_trace(go.Histogram(x = df['age'],xbins=dict( # bins used for histogramstart=40,end=95,size=2),marker_color='#e8ab60',opacity=1
))fig.update_layout(title_text='AGE DISTRIBUTION',xaxis_title_text='AGE',yaxis_title_text='COUNT', bargap=0.05, # gap between bars of adjacent location coordinatesxaxis =  {'showgrid': False },yaxis = {'showgrid': False },template = 'plotly_dark'
)fig.show()

 

plt.style.use("seaborn")
for column in df.columns:if df[column].dtype!="object":plt.figure(figsize=(15,6))plt.subplot(2,2,1)sns.histplot(data=df,x=column,kde=True)plt.ylabel("freq")plt.xlabel(column)plt.title(f"distribution of {column}")plt.subplot(2,2,2)sns.boxplot(data=df,x=column)plt.ylabel(column)plt.title(f"boxplot of {column}")plt.show()

 

 接下来进行机器学习预测,划分训练集和测试集

逻辑回归

from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler()x = scaler.fit_transform(x)
y = scaler.fit_transform(y.values.reshape(-1,1))
model = LogisticRegression()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(classification_report(y_test,y_pred))

决策树

支持向量机

plt.rcParams['figure.figsize']=15,6 
sns.set_style("darkgrid")
ax = sns.barplot(x=mylist2, y=mylist, palette = "rocket", saturation =1.5)
plt.xlabel("Classifier Models", fontsize = 20 )
plt.ylabel("% of Accuracy", fontsize = 20)
plt.title("Accuracy of different Classifier Models", fontsize = 20)
plt.xticks(fontsize = 12, horizontalalignment = 'center', rotation = 8)
plt.yticks(fontsize = 13)
for p in ax.patches:width, height = p.get_width(), p.get_height()x, y = p.get_xy() ax.annotate(f'{height:.2%}', (x + width/2, y + height*1.02), ha='center', fontsize = 'x-large')
plt.show()

 

完整代码和数据

创作不易,希望大家多点赞关注评论!!! 

这篇关于python数据分析-心脏衰竭分析与预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042106

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.