OpenAI发表研究论文 介绍了一种逆向工程AI模型工作原理的方法

本文主要是介绍OpenAI发表研究论文 介绍了一种逆向工程AI模型工作原理的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ChatGPT 开发商 OpenAI 构建人工智能的方法本周遭到了前员工的抨击,他们指责该公司利用可能有害的技术冒不必要的风险。今天,OpenAI 发布了一篇新的研究论文,目的显然是为了表明它在通过提高模型的可解释性来应对人工智能风险方面的认真态度。

在这里插入图片描述
在论文中,该公司的研究人员提出了一种窥探为 ChatGPT 提供动力的人工智能模型内部的方法。他们设计了一种方法来识别模型如何存储某些概念–包括那些可能导致人工智能系统行为失常的概念。

虽然这项研究使 OpenAI 在控制人工智能方面的工作更加引人注目,但也凸显了该公司最近的动荡。新研究由 OpenAI最近解散的"超对齐"团队完成,该团队致力于研究技术的长期风险。

前小组的共同负责人伊利亚-苏茨克沃(Ilya Sutskever)和扬-莱克(Jan Leike)均已离开OpenAI,并被列为共同作者。苏茨克沃是OpenAI的创始人之一,曾任首席科学家,去年11月,董事会成员投票解雇了首席执行官山姆-奥特曼(Sam Altman),引发了几天的混乱,最终奥特曼重返领导岗位。

ChatGPT 由一个名为 GPT 的大型语言模型系列提供支持,该模型基于一种被称为人工神经网络的机器学习方法。这些数学网络通过分析示例数据显示出了学习有用任务的强大能力,但它们的工作原理无法像传统计算机程序那样被轻易检查。人工神经网络中各层"神经元"之间复杂的相互作用,使得逆向分析 ChatGPT 这样的系统为何会得出特定的反应极具挑战性。

这项工作背后的研究人员在一篇随附的博文中写道:“与大多数人类创造物不同,我们并不真正了解神经网络的内部运作。一些著名的人工智能研究人员认为,包括 ChatGPT 在内的最强大的人工智能模型或许可以用来设计生化武器和协调网络攻击。一个更长期的担忧是,人工智能模型可能会选择隐藏信息或以有害的方式行事,以实现它们的目标。”

OpenAI 的这篇新论文概述了一种技术,该技术借助额外的机器学习模型,识别代表机器学习系统内部特定概念的模式,从而稍稍降低了神秘感。创新的关键在于通过识别概念来完善用于窥探系统内部的网络,从而提高效率。

OpenAI 通过在其最大的人工智能模型之一 GPT-4 中识别代表概念的模式证明了这种方法。该公司发布了与可解释性工作相关的代码,以及一个可视化工具,用于查看不同句子中的单词如何激活 GPT-4 和另一个模型中的概念,包括亵渎和色情内容。了解一个模型是如何表现某些概念的,这将有助于减少与不受欢迎的行为相关的概念,使人工智能系统保持正常运行。它还可以调整人工智能系统,使其偏向于某些主题或想法。

尽管 LLM 无法被轻易解读,但越来越多的研究表明,它们可以被穿透,从而揭示出有用的信息。由亚马逊和Google支持的 OpenAI 竞争对手 Anthropic 上个月也发表了类似的人工智能可解释性研究成果。为了演示如何调整人工智能系统的行为,该公司的研究人员创造了一个痴迷于旧金山金门大桥的聊天机器人。有时,只需让人工只能机器人解释其推理过程,就能获得深刻的见解。

东北大学从事人工智能可解释性研究的教授大卫-鲍(David Bau)在谈到 OpenAI 的新研究时说:"这是令人兴奋的进展。“作为一个领域,我们需要学习如何更好地理解和审视这些大型模型。”

鲍说,OpenAI 团队的主要创新在于展示了一种配置小型神经网络的更有效方法,该网络可用于理解大型神经网络的组成部分。但他也指出,这项技术还需要改进,以使其更加可靠。要利用这些方法创造出完全可以理解的解释,还有很多工作要做。"

鲍是美国政府资助的一项名为"国家深度推理结构"(National Deep Inference Fabric)的工作的一部分,这项工作将向学术研究人员提供云计算资源,以便他们也能探索特别强大的人工智能模型。他说:“我们需要想办法让科学家即使不在这些大公司工作,也能从事这项工作。”

OpenAI 的研究人员在论文中承认,要改进他们的方法还需要进一步的工作,但他们也表示,希望这种方法能带来控制人工智能模型的实用方法。他们写道:“我们希望有一天,可解释性能为我们提供推理模型安全性和鲁棒性的新方法,并通过为强大的人工智能模型的行为提供强有力的保证,大大增加我们对它们的信任。”

阅读论文全文:

https://cdn.openai.com/papers/sparse-autoencoders.pdf

这篇关于OpenAI发表研究论文 介绍了一种逆向工程AI模型工作原理的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041888

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方