python数据分析-心脏瓣膜手术风险分析与预测

2024-06-08 09:52

本文主要是介绍python数据分析-心脏瓣膜手术风险分析与预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

研究背景

人的心脏有四个瓣膜,主动脉银、二尖、肺动脉和三尖源 不管是那一个膜发生了病变,都会导致心脏内的血流受到影响,这就是通常所说的心脏期膜病,很多是需要通过手术的方式进行改善的。随着人口老龄化的加剧,,心脏期膜病是我国最常见的心血管疾病之-,需要接受心脏瓣膜手术治疗的患者数量逐年拳升。心脏期膜手术是对病变的心脏辨膜所进行的外科手术,一般包括心脏期的置换和修复手术,心期手术是在外科技术的基础上,对病变的心脏期膜所进行的手术,可以改善患者心脏期聘狭窄或关闭不全的现象。不过心脏瓣膜病手术可能会引发机械瓣并发症,导致心功能变差,严重的还会直接造成患者死亡。

实验分析

首先导入基本的数据分析包

# import data handling libsimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# import modelsfrom sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm  import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifierimport warnings
warnings.filterwarnings('ignore')

读取数据

# Importing datasetdf = pd.read_csv('dataset.csv')

展示数据集和结构

df.head()
rows, columns = df.shapeprint(f"Number Of Rows : {rows}")
print(f"Number Of Columns : {columns}")

 

数据集特征结构

df.info()

描述性分析

df.describe()

查看每列的唯一值的数量 

df.nunique()

查看下相关系数并且画出热力图

plt.figure(figsize=(10, 8))
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='Blues')

 查看缺失值

df.isnull().sum()

 接下来进行特征选择

plt.rcParams['figure.figsize']=15,6 
sns.set_style("darkgrid")x = df.iloc[:, :-1]
y = df.iloc[:,-1]from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
model = ExtraTreesClassifier()
model.fit(x,y)
print(model.feature_importances_) 
feat_importances = pd.Series(model.feature_importances_, index=x.columns)
feat_importances.nlargest(12).plot(kind='barh', color='teal')
plt.show()

检查一下离群值

sns.boxplot(x = df.ejection_fraction, color='teal')
plt.show()

 

可以发现有两个离群值

接下来对特征进行可视化 

# Distribution of Ageimport plotly.graph_objects as gofig = go.Figure()
fig.add_trace(go.Histogram(x = df['age'],xbins=dict( # bins used for histogramstart=40,end=95,size=2),marker_color='#e8ab60',opacity=1
))fig.update_layout(title_text='AGE DISTRIBUTION',xaxis_title_text='AGE',yaxis_title_text='COUNT', bargap=0.05, # gap between bars of adjacent location coordinatesxaxis =  {'showgrid': False },yaxis = {'showgrid': False },template = 'plotly_dark'
)fig.show()
plt.style.use("seaborn")
for column in df.columns:if df[column].dtype!="object":plt.figure(figsize=(15,6))plt.subplot(2,2,1)sns.histplot(data=df,x=column,kde=True)plt.ylabel("freq")plt.xlabel(column)plt.title(f"distribution of {column}")plt.subplot(2,2,2)sns.boxplot(data=df,x=column)plt.ylabel(column)plt.title(f"boxplot of {column}")plt.show()

 

 

 

 接下来进行机器学习预测,划分训练集和测试集

逻辑回归

from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler()x = scaler.fit_transform(x)
y = scaler.fit_transform(y.values.reshape(-1,1))
model = LogisticRegression()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(classification_report(y_test,y_pred))

决策树

支持向量机

 

plt.rcParams['figure.figsize']=15,6 
sns.set_style("darkgrid")
ax = sns.barplot(x=mylist2, y=mylist, palette = "rocket", saturation =1.5)
plt.xlabel("Classifier Models", fontsize = 20 )
plt.ylabel("% of Accuracy", fontsize = 20)
plt.title("Accuracy of different Classifier Models", fontsize = 20)
plt.xticks(fontsize = 12, horizontalalignment = 'center', rotation = 8)
plt.yticks(fontsize = 13)
for p in ax.patches:width, height = p.get_width(), p.get_height()x, y = p.get_xy() ax.annotate(f'{height:.2%}', (x + width/2, y + height*1.02), ha='center', fontsize = 'x-large')
plt.show()

 

完整代码和数据

创作不易,希望大家多点赞关注评论!!! 

这篇关于python数据分析-心脏瓣膜手术风险分析与预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041854

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以