Python在股票交易分析中的应用:布林带与K线图的实战回测

2024-06-08 09:44

本文主要是介绍Python在股票交易分析中的应用:布林带与K线图的实战回测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在股票交易的世界中,技术分析是投资者们用来预测市场动向的重要工具。布林带(Bollinger Bands)作为一种动态波动范围指标,因其直观性和实用性而广受欢迎。本文将通过Python代码,展示如何使用布林带结合K线图来分析股票价格走势,并寻找可能的交易信号。

布林带指标简介

布林带由三部分组成:中轨(移动平均线),上轨(中轨加上两倍标准差),以及下轨(中轨减去两倍标准差)。它们可以帮助交易者识别股票的超买或超卖状态,从而发现潜在的买卖机会。

Python代码实现

以下是使用Python进行布林带计算和K线图绘制的完整示例代码:

1. 导入必要的库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

2. 定义布林带计算函数

def bollinger_bands(close_prices, window=20, num_std=2):rolling_mean = close_prices.rolling(window=window).mean()rolling_std = close_prices.rolling(window=window).std()upper_band = rolling_mean + (rolling_std * num_std)lower_band = rolling_mean - (rolling_std * num_std)return upper_band, lower_band

3. 生成模拟数据示例数据

np.random.seed(0)
dates = pd.date_range(start='2022-01-01', end='2024-01-01', freq='D')
prices = np.random.normal(loc=100, scale=2, size=len(dates)) + np.sin(np.arange(len(dates)) * 0.05) * 10
opens = prices * np.random.uniform(0.98, 1.02, len(prices))
closes = prices * np.random.uniform(0.98, 1.02, len(prices))
df = pd.DataFrame({'Open': opens, 'Close': closes}).set_index(dates)

4. 计算涨跌幅和布林带

df['Color'] = np.where(df['Close'] > df['Open'], 'red', 'cyan')
upper_band, lower_band = bollinger_bands(df['Close'])

5. 标记买卖信号

buy_signals = df[df['Close'] < lower_band]
sell_signals = df[df['Close'] > upper_band]

6. 计算累计盈利

profit = 0
profits = []
for i in range(1, len(df)):if df['Close'][i] > df['Close'][i-1]:profit += df['Close'][i] - df['Close'][i-1]else:profit -= df['Close'][i] - df['Close'][i-1]profits.append(profit)
df['Cumulative_Profit'] = profits

7. 绘制K线图、布林带和累计盈利图

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10), sharex=True)

8.绘制K线图

for i in range(len(df)):color = df['Color'][i]ax1.plot(df.index[i:i+1], df['Open'][i:i+1], color=color, linewidth=1)ax1.plot(df.index[i:i+1], df['Close'][i:i+1], color=color, linewidth=1)

9.绘制布林带

ax1.plot(upper_band, color='red', linestyle='--', label='Upper Band')
ax1.plot(lower_band, color='green', linestyle='--', label='Lower Band')

9. 标记买卖信号

ax1.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='blue', label='Buy Signal')
ax1.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', label='Sell Signal')

9. 绘制累计盈利图

ax2.plot(df.index[1:], df['Cumulative_Profit'], color='blue', label='Cumulative Profit')

9.设置图表标题和标签

ax1.set_title('Stock Price with Bollinger Bands and Signals')
ax1.set_ylabel('Price')
ax2.set_title('Cumulative Profit Over Time')
ax2.set_ylabel('Profit')

9. 显示图例

ax1.legend()
ax2.legend()

9.显示图表

plt.tight_layout()
plt.show()

完整代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 计算布林带指标
def bollinger_bands(close_prices, window=20, num_std=2):rolling_mean = close_prices.rolling(window=window).mean()rolling_std = close_prices.rolling(window=window).std()upper_band = rolling_mean + (rolling_std * num_std)lower_band = rolling_mean - (rolling_std * num_std)return upper_band, lower_band# 生成示例数据
np.random.seed(0)
dates = pd.date_range(start='2022-01-01', end='2024-01-01', freq='D')
prices = np.random.normal(loc=100, scale=2, size=len(dates)) + np.sin(np.arange(len(dates)) * 0.05) * 10
opens = prices * np.random.uniform(0.98, 1.02, len(prices))
closes = prices * np.random.uniform(0.98, 1.02, len(prices))
df = pd.DataFrame({'Date': dates, 'Open': opens, 'Close': closes}).set_index('Date')# 计算涨跌幅
df['Color'] = np.where(df['Close'] > df['Open'], 'red', 'cyan')# 计算布林带
upper_band, lower_band = bollinger_bands(df['Close'])# 标记买卖信号
buy_signals = df[df['Close'] < lower_band]
sell_signals = df[df['Close'] > upper_band]# 计算累计盈利
profit = 0
profits = []
for i in range(1, len(df)):if df['Close'][i] > df['Close'][i-1]:profit += df['Close'][i] - df['Close'][i-1]else:profit -= df['Close'][i] - df['Close'][i-1]profits.append(profit)# 绘制K线图和信号图以及累计盈利图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10), sharex=True)# 绘制K线图
for i in range(len(df)):if df['Close'][i] > df['Open'][i]:ax1.plot([df.index[i], df.index[i]], [df['Open'][i], df['Close'][i]], color='red', linewidth=1)else:ax1.plot([df.index[i], df.index[i]], [df['Open'][i], df['Close'][i]], color='cyan', linewidth=1)ax1.set_title('Candlestick Chart and Signals')
ax1.set_ylabel('Price')
ax1.grid(True)# 绘制布林带
ax1.plot(upper_band.index, upper_band, label='Upper Bollinger Band', color='red', linestyle='--')
ax1.plot(lower_band.index, lower_band, label='Lower Bollinger Band', color='green', linestyle='--')# 标记买卖信号
ax1.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='blue', label='Buy Signal')
ax1.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', label='Sell Signal')# 绘制累计盈利图
ax2.plot(df.index[1:], profits, label='Cumulative Profit', color='blue')
ax2.set_title('Cumulative Profit')
ax2.set_xlabel('Date')
ax2.set_ylabel('Profit')
ax2.legend()
ax2.grid(True)plt.tight_layout()
plt.show()

效果展示

在这里插入图片描述

这篇关于Python在股票交易分析中的应用:布林带与K线图的实战回测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041830

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的