Python在股票交易分析中的应用:布林带与K线图的实战回测

2024-06-08 09:44

本文主要是介绍Python在股票交易分析中的应用:布林带与K线图的实战回测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在股票交易的世界中,技术分析是投资者们用来预测市场动向的重要工具。布林带(Bollinger Bands)作为一种动态波动范围指标,因其直观性和实用性而广受欢迎。本文将通过Python代码,展示如何使用布林带结合K线图来分析股票价格走势,并寻找可能的交易信号。

布林带指标简介

布林带由三部分组成:中轨(移动平均线),上轨(中轨加上两倍标准差),以及下轨(中轨减去两倍标准差)。它们可以帮助交易者识别股票的超买或超卖状态,从而发现潜在的买卖机会。

Python代码实现

以下是使用Python进行布林带计算和K线图绘制的完整示例代码:

1. 导入必要的库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

2. 定义布林带计算函数

def bollinger_bands(close_prices, window=20, num_std=2):rolling_mean = close_prices.rolling(window=window).mean()rolling_std = close_prices.rolling(window=window).std()upper_band = rolling_mean + (rolling_std * num_std)lower_band = rolling_mean - (rolling_std * num_std)return upper_band, lower_band

3. 生成模拟数据示例数据

np.random.seed(0)
dates = pd.date_range(start='2022-01-01', end='2024-01-01', freq='D')
prices = np.random.normal(loc=100, scale=2, size=len(dates)) + np.sin(np.arange(len(dates)) * 0.05) * 10
opens = prices * np.random.uniform(0.98, 1.02, len(prices))
closes = prices * np.random.uniform(0.98, 1.02, len(prices))
df = pd.DataFrame({'Open': opens, 'Close': closes}).set_index(dates)

4. 计算涨跌幅和布林带

df['Color'] = np.where(df['Close'] > df['Open'], 'red', 'cyan')
upper_band, lower_band = bollinger_bands(df['Close'])

5. 标记买卖信号

buy_signals = df[df['Close'] < lower_band]
sell_signals = df[df['Close'] > upper_band]

6. 计算累计盈利

profit = 0
profits = []
for i in range(1, len(df)):if df['Close'][i] > df['Close'][i-1]:profit += df['Close'][i] - df['Close'][i-1]else:profit -= df['Close'][i] - df['Close'][i-1]profits.append(profit)
df['Cumulative_Profit'] = profits

7. 绘制K线图、布林带和累计盈利图

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10), sharex=True)

8.绘制K线图

for i in range(len(df)):color = df['Color'][i]ax1.plot(df.index[i:i+1], df['Open'][i:i+1], color=color, linewidth=1)ax1.plot(df.index[i:i+1], df['Close'][i:i+1], color=color, linewidth=1)

9.绘制布林带

ax1.plot(upper_band, color='red', linestyle='--', label='Upper Band')
ax1.plot(lower_band, color='green', linestyle='--', label='Lower Band')

9. 标记买卖信号

ax1.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='blue', label='Buy Signal')
ax1.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', label='Sell Signal')

9. 绘制累计盈利图

ax2.plot(df.index[1:], df['Cumulative_Profit'], color='blue', label='Cumulative Profit')

9.设置图表标题和标签

ax1.set_title('Stock Price with Bollinger Bands and Signals')
ax1.set_ylabel('Price')
ax2.set_title('Cumulative Profit Over Time')
ax2.set_ylabel('Profit')

9. 显示图例

ax1.legend()
ax2.legend()

9.显示图表

plt.tight_layout()
plt.show()

完整代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 计算布林带指标
def bollinger_bands(close_prices, window=20, num_std=2):rolling_mean = close_prices.rolling(window=window).mean()rolling_std = close_prices.rolling(window=window).std()upper_band = rolling_mean + (rolling_std * num_std)lower_band = rolling_mean - (rolling_std * num_std)return upper_band, lower_band# 生成示例数据
np.random.seed(0)
dates = pd.date_range(start='2022-01-01', end='2024-01-01', freq='D')
prices = np.random.normal(loc=100, scale=2, size=len(dates)) + np.sin(np.arange(len(dates)) * 0.05) * 10
opens = prices * np.random.uniform(0.98, 1.02, len(prices))
closes = prices * np.random.uniform(0.98, 1.02, len(prices))
df = pd.DataFrame({'Date': dates, 'Open': opens, 'Close': closes}).set_index('Date')# 计算涨跌幅
df['Color'] = np.where(df['Close'] > df['Open'], 'red', 'cyan')# 计算布林带
upper_band, lower_band = bollinger_bands(df['Close'])# 标记买卖信号
buy_signals = df[df['Close'] < lower_band]
sell_signals = df[df['Close'] > upper_band]# 计算累计盈利
profit = 0
profits = []
for i in range(1, len(df)):if df['Close'][i] > df['Close'][i-1]:profit += df['Close'][i] - df['Close'][i-1]else:profit -= df['Close'][i] - df['Close'][i-1]profits.append(profit)# 绘制K线图和信号图以及累计盈利图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10), sharex=True)# 绘制K线图
for i in range(len(df)):if df['Close'][i] > df['Open'][i]:ax1.plot([df.index[i], df.index[i]], [df['Open'][i], df['Close'][i]], color='red', linewidth=1)else:ax1.plot([df.index[i], df.index[i]], [df['Open'][i], df['Close'][i]], color='cyan', linewidth=1)ax1.set_title('Candlestick Chart and Signals')
ax1.set_ylabel('Price')
ax1.grid(True)# 绘制布林带
ax1.plot(upper_band.index, upper_band, label='Upper Bollinger Band', color='red', linestyle='--')
ax1.plot(lower_band.index, lower_band, label='Lower Bollinger Band', color='green', linestyle='--')# 标记买卖信号
ax1.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='blue', label='Buy Signal')
ax1.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', label='Sell Signal')# 绘制累计盈利图
ax2.plot(df.index[1:], profits, label='Cumulative Profit', color='blue')
ax2.set_title('Cumulative Profit')
ax2.set_xlabel('Date')
ax2.set_ylabel('Profit')
ax2.legend()
ax2.grid(True)plt.tight_layout()
plt.show()

效果展示

在这里插入图片描述

这篇关于Python在股票交易分析中的应用:布林带与K线图的实战回测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041830

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.