InternLM-XComposer2-4KHD开拓性的4K高清视觉-语言模型

2024-06-08 07:04

本文主要是介绍InternLM-XComposer2-4KHD开拓性的4K高清视觉-语言模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 大型视觉-语言模型(LVLM)在图像字幕和视觉问答(VQA)等任务中表现出色。然而,受限于分辨率,这些模型在处理包含细微视觉内容的图像时面临挑战。

分辨率的限制严重阻碍了模型处理含有丰富细节的图像的能力。例如,在理解图表、表格和文档等类型的视觉内容时,细节的清晰度对于准确解读和生成语言描述至关重要。然而,当图像的分辨率不足时,这些细微的视觉信息可能会丢失,导致模型无法准确地捕捉和学习图像中的关键细节。

现有模型通常只能在一个预先设定的分辨率范围内工作,这限制了它们的适用性和灵活性。在现实世界的应用场景中,需要处理的图像分辨率千差万别,从低分辨率的缩略图到高分辨率的专业图像都有。如果模型不能适应不同分辨率的输入,就无法满足多样化的业务需求,也无法在更广泛的视觉任务中发挥作用。

固定分辨率的处理方式也意味着在面对超高清图像时,模型可能需要对输入图像进行压缩,从而丢失重要的视觉信息,或者在处理低分辨率图像时,模型的计算资源没有得到充分利用。

InternLM-XComposer2-4KHD模型正是在这样的背景下应运而生,它通过一系列创新的技术手段,显著提升了LVLM在高分辨率图像处理方面的能力。

方法

模型架构设计

InternLM-XComposer2-4KHD模型的架构设计是其高性能的关键因素之一。该模型的架构建立在InternLM-XComposer2的基础之上,进行了针对性的扩展和改进,以支持高达4K HD分辨率的图像处理。包括以下三个核心组成部分:

轻量级视觉编码器:OpenAI ViT-Large/14

视觉编码器的作用是将输入的图像转换为模型能够理解的特征表示。InternLM-XComposer2-4KHD使用了OpenAI的ViT-Large/14作为其视觉编码器。ViT,即Vision Transformer,是一种基于Transformer架构的视觉模型,它通过将图像分割成一系列的小块(patches),然后将这些小块线性嵌入到一个高维空间中,从而实现对图像的有效编码。ViT-Large/14表示使用了14层Transformer结构的较大型号ViT,这为模型提供了强大的视觉特征提取能力。

大语言模型:InternLM2-7B

语言模型是处理和生成文本的核心组件。InternLM-XComposer2-4KHD采用了InternLM2-7B作为其语言模型,这是一个拥有7亿参数的大型Transformer模型。这个模型不仅能够捕捉到语言的复杂结构和语义,还能够支持多模态任务中的文本生成和理解。通过与视觉编码器的输出相结合,InternLM2-7B能够提供对图像内容的深入理解和准确的语言描述。

部分LoRA对齐:特征对齐

为了实现视觉编码器和语言模型之间的有效对齐,InternLM-XComposer2-4KHD引入了部分LoRA(Low-Rank Adaptation)技术。LoRA是一种参数效率的适配方法,它通过对模型的一小部分参数进行调整,而不是对整个模型进行训练,从而实现对模型的优化。在InternLM-XComposer2-4KHD中,LoRA技术被用来对齐视觉特征和语言特征,确保了两种模态之间的信息能够有效地交互和整合。

这三个组件共同构成了InternLM-XComposer2-4KHD的架构,使其能够处理高分辨率的图像,并在多种视觉-语言任务中表现出色。通过这种设计,模型不仅能够理解和生成与图像内容紧密相关的语言描述,还能够在保持计算效率的同时,处理比以往任何模型都要高分辨率的图像输入。

动态图像分割策略

为了解决高分辨率图像的处理问题,该模型采用了动态图像分割策略。这一策略允许模型接收不同分辨率的图像输入,并能够根据图像的最大补丁数H动态调整图像的分割方式。具体来说,输入图像被调整并填充到一个以336×336大小为单位的网格中,同时保持图像的原始宽高比。这一过程确保了图像的细节信息不会因为固定的输入尺寸而丢失。

预训练阶段

在预训练阶段,模型使用了三种不同目标的数据集,以增强模型在一般语义对齐、世界知识对齐和视觉能力方面的性能。预训练使用了OpenAI CLIP ViT-L-14-336作为视觉编码器,并采用了动态图像分割策略中的‘HD-25’设置,以此来处理高分辨率的图像输入。

预训练过程涉及将图像分割成多个小块,并从每个块中提取特征。这些特征随后被合并,并与语言模型的输出相结合。训练过程中,模型学习将视觉特征与相应的文本描述相匹配,以此来理解图像内容及其对应的语言表述。

4KHD监督微调

在预训练之后,模型通过4KHD监督微调进一步增强了对高分辨率图像的理解能力。这一步骤特别针对OCR相关任务,这些任务对文本的清晰度和细节有更高的要求。微调过程中,模型采用了混合分辨率训练策略,对于需要极高分辨率的任务,如高清OCR问答,模型会使用‘HD-55’设置来输入4K(3840×1600)分辨率的图像。而对于其他任务,模型则采用了动态分辨率策略,以增强对输入分辨率变化的鲁棒性。

创新点说明

InternLM-XComposer2-4KHD模型的创新之处在于其对高分辨率图像的处理能力、动态分辨率适应性以及全局-局部格式的理解方法。这些创新点共同推动了大型视觉-语言模型(LVLM)在图像理解方面的进步,特别是在处理高分辨率和结构化图像的任务中。

模型的高分辨率处理能力是其最显著的创新之一。InternLM-XComposer2-4KHD能够处理高达4K HD分辨率的图像,这在当时的LVLM中是前所未有的。与只能处理较低分辨率图像的现有模型相比,该模型可以捕捉到更多的视觉细节,这对于理解图像中的复杂场景和细微元素至关重要。这种处理能力使得模型在高清OCR任务、详细文档扫描和复杂图表理解等方面具有显著优势。

模型采用了动态分辨率技术,可以根据输入图像的尺寸和宽高比,自动调整图像的分割方式。这种自适应分辨率的能力,使得模型可以灵活地处理不同分辨率的图像,而不需要对每种分辨率进行单独的训练或调整。此外,模型还能够自动配置补丁的数量和布局,这是通过在预训练的Vision Transformer(ViT)基础上进行的,ViT能够根据图像的内容和结构,动态地调整补丁的划分,从而优化模型对图像特征的提取。

模型引入了全局-局部格式的理解方法,这在处理结构化图像方面尤为重要。全局视图允许模型首先获取图像的整体上下文信息,而局部视图则使得模型能够分别处理图像的各个部分。通过动态图像分割策略,模型将图像分割成多个小块(patches),并分别提取每个小块的特征。这种结合全局和局部信息的方法,使得模型能够更全面地理解图像的结构和内容,特别是在理解文档、图表和表格等结构化图像时,这种方法显示出了其独特的优势。

实验结果

实验结果显示,InternLM-XComposer2-4KHD在10个基准测试中的表现达到了或超过了GPT4V和Gemini Pro。这一结果证明了InternLM-XComposer2-4KHD在处理高分辨率图像方面的显著优势。尤其是在高清OCR任务中,模型展现出了卓越的性能,这归功于其能够处理高达4K分辨率图像的能力。

InternLM-XComposer2-4KHD与闭源API和先前开源SOTA模型的比较显示,InternLM-XComposer2-4KHD在多个基准测试中取得了SOTA结果,尤其是在DocVQA和ChartQA上,其性能超过了GPT-4V和Gemini-Pro。与开源SOTA方法进行了比较,显示了InternLM-XComposer2-4KHD在大多数基准测试中的优越性能。

高分辨率任务的性能评估展示了InternLM-XComposer2-4KHD在处理高分辨率图像方面的显著优势,尤其是在OCR相关任务上。

当推理时使用的图像分辨率高于训练时使用的分辨率时,模型在处理文本相关任务时的性能有所提升。例如,在InfographicVQA任务中,当从HD9(较低分辨率)切换到HD16(较高分辨率)进行推理时,模型的性能提升了8.1%,而无需额外的训练。这一发现指出,即使在训练阶段未达到最高分辨率,通过在推理阶段提高图像分辨率,模型仍能够更好地捕捉图像中的文本信息,从而提高其对文本的理解能力。

全局视图对于模型在多个基准测试中的性能至关重要。当全局视图被移除时,模型在所有基准测试中的表现都有所下降,例如在MMBench EN-Test中的性能下降了4.4%。这表明全局视图为模型提供了一个整体的图像上下文,有助于模型更好地理解和解释图像内容。

论文链接:https://arxiv.org/abs/2404.06512

Github 地址:https://github.com/InternLM/InternLM-XComposer

这篇关于InternLM-XComposer2-4KHD开拓性的4K高清视觉-语言模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041484

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码