《广告数据定量分析》读书笔记之统计原理2

2024-06-07 19:52

本文主要是介绍《广告数据定量分析》读书笔记之统计原理2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3.相关分析:描述的是两个数值变量间关系的强度。(两个数值型变量之间的关系)
(1)图表表示:散点图
(2)衡量关系强度指标:相关系数r。
(r的取值为-1到 +1,-1代表两个变量是完全的负线性相关关系,+1代是完全的正线性相关关系,0代表两个变量不存在线性相关关系,越接近1两个变量的关系强度越高。)
4.回归分析:描述的是一个或多个自变量的变化是如何影响因变量的一种方法。(两个数值型变量之间的关系)
(1)回归分析的核心价值在于“预测”,即通过对历史数据的分析,构建可以预测未来因变量值的数学公式。
(2)公式:因变量=斜率*自变量+截距(y=β1*x+ β0)
(3)拟合优度度量:R^2
①R^2的取值介于0~1之间,越接近1,表明x与y之间的线性关系对预测,值的贡献越大,拟合程度就越好。
②具体操作方法:Excel的“数据”菜单栏-数据分析-回归

Multiple R(相关系数r);

RSquare(判定系数R^2); 一般用于单个自变量

Adjusted R Square(调整后的判定系数 R^2); 一般用于多个自变量

标准误差(用回归方程预测因变量y时预测了误差的大小,各数据点越靠近回归直线,标准误差越小,回归方程进行的预测也就越准确)。

5.方差分析(分类型变量与数值型变量之间的关系)
(1)用途:可用于判断渠道、性别、年龄等对广告效果的影响强度;利用对多个样本的方差的分析,得出总体均值是否相等的判定。
(2)判断

方法一:F值判断是否显著影响,F大于Fa则显著影响;

方法二:P值小于a,则显著影响;

(3)具体操作方法:Excel的“数据”菜单栏-数据分析-方差分析(单因子选单因子方差分析)

(4)例子

这篇关于《广告数据定量分析》读书笔记之统计原理2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040142

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=