MI-SegNet: 基于互信息的超越领域泛化的超声图像分割

2024-06-07 13:52

本文主要是介绍MI-SegNet: 基于互信息的超越领域泛化的超声图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain Generalization
    • 摘要
    • 方法
    • 实验结果

MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain Generalization

摘要

  1. 针对医学图像分割在不同领域间泛化能力有限的问题,特别是针对超声成像,论文提出了一种新的方法称为MI-SegNet。
  2. 超声成像的质量很依赖于声学参数的精细调整,这些参数在不同的操作者、设备和环境中都存在差异,导致了领域偏移问题。
  3. MI-SegNet利用互信息(MI)来显式地分离解耦解剖特征和领域特征表示,从而可以期望获得更鲁棒的领域无关分割性能。
  4. 该方法使用两个编码器网络来分别学习解剖和领域特征,分割任务只使用解剖特征图进行预测。通过交叉重建等训练技巧来促进编码器学习到有意义的特征表示。
  5. 此外,还应用了特定于领域或解剖的变换,并惩罚两个特征图之间的任何残留MI,进一步促进特征空间的分离。
    代码地址

方法

在这里插入图片描述

  1. 输入: 两张输入图像,分别为xa1d1和xa2d2。它们来自不同的领域d1和d2。
  2. 编码器: 使用两个独立的编码器网络(Encoder1和Encoder2)来分别提取解剖特征和领域特征。
  3. 分割模块: 接收Encoder1提取的解剖特征,并执行语义分割任务,输出分割结果。
  4. 重建模块: 将Encoder1和Encoder2提取的特征输入到重建模块,进行交叉重建以确保两个编码器学习到有意义的特征表示。
  5. 变换模块: 对输入图像施加特定于领域或解剖的变换,以指导编码器网络学习相应的特征。
  6. MI惩罚: 计算两个编码器的输出特征之间的互信息(MI),并将其最小化,进一步促进特征空间的分离。

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于MI-SegNet: 基于互信息的超越领域泛化的超声图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039360

相关文章

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB