联邦学习在non-iid数据集上的划分和训练——从零开始实现

2024-06-07 09:28

本文主要是介绍联邦学习在non-iid数据集上的划分和训练——从零开始实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

虽然网上已经有了很多关于Dirichlet分布进行数据划分的原理和方法介绍,但是整个完整的联邦学习过程还是少有人分享。今天就从零开始实现

加载FashionMNIST数据集

import torch
from torchvision import datasets, transforms# 定义数据转换
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])# 加载训练和测试数据集
train_dataset = datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)

定义Dirichlet分布的划分函数

这里的写法是其中一种,也可以参考其它大神的写法。
具体Dirichlet划分的原理也可以参考下面的博客:
联邦学习:按Dirichlet分布划分Non-IID样本 - orion-orion - 博客园 (cnblogs.com)

import numpy as npdef dirichlet_distribution_noniid(dataset, num_clients, alpha):# 获取每个类的索引class_indices = [[] for _ in range(10)]for idx, (image, label) in enumerate(dataset):class_indices[label].append(idx)# 使用Dirichlet分布进行数据划分client_indices = [[] for _ in range(num_clients)]for class_idx in class_indices:np.random.shuffle(class_idx)proportions = np.random.dirichlet([alpha] * num_clients)proportions = (np.cumsum(proportions) * len(class_idx)).astype(int)[:-1]client_split = np.split(class_idx, proportions)for client_idx, client_split_indices in enumerate(client_split):client_indices[client_idx].extend(client_split_indices)return client_indices

将数据集划分给各客户端

这里的代码操作核心在于,对数据加载器DataLoader中的Subset的理解,这个函数是根据索引将数据集划分为子数据集,以前我知道它是在做什么,但是一直不太明白用法,最终在ChatGPT的帮助下完成了:

num_clients = 10
alpha = 0.5 #non-iid程度的超参数,我喜欢用0.5和0.3
client_indices = dirichlet_distribution_noniid(train_dataset, num_clients, alpha)# 创建客户端数据加载器
from torch.utils.data import DataLoader, Subsetclient_loaders = [DataLoader(Subset(train_dataset, indices), batch_size=32, shuffle=True) for indices in client_indices]

定义模型、训练函数和测试函数

import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as pltclass SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.flatten = nn.Flatten()self.fc1 = nn.Linear(28*28, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.flatten(x)x = torch.relu(self.fc1(x))x = self.fc2(x)return xdef train(model, train_loader, criterion, optimizer, device, epochs=5):model.train()model.to(device)for epoch in range(epochs):running_loss = 0.0for images, labels in train_loader:images, labels = images.to(device), labels.to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f"Epoch [{epoch+1}/{epochs}], Loss: {running_loss/len(train_loader):.4f}")def test(model, test_loader, device):model.eval()model.to(device)correct = 0total = 0with torch.no_grad():for images, labels in test_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalreturn accuracy

进行训练并记录测试准确度

# 选择设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 创建模型和损失函数
model = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练和测试数据加载器
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)# 记录每轮测试准确度
test_accuracies = []# 在每个客户端上进行训练并测试
for i, client_loader in enumerate(client_loaders):print(f"Training on client {i+1}")train(model, client_loader, criterion, optimizer, device)accuracy = test(model, test_loader, device)test_accuracies.append(accuracy)print(f"Test Accuracy after client {i+1}: {accuracy:.4f}")# 绘制测试准确度变化图
plt.figure(figsize=(10, 5))
plt.plot(range(1, num_clients + 1), test_accuracies, marker='o')
plt.title('Test Accuracy after Training on Each Client')
plt.xlabel('Client')
plt.ylabel('Test Accuracy')
plt.ylim(0, 1)
plt.grid(True)
plt.show()

一些踩过的坑

Expected more than 1 value per channel when training, got input size torch.Size

解决方案

这里可能是当UE数量让数据集没法整除的时候,出现了多余的batch。
设置 batch_size>1, 且 drop_last=True

 DataLoader(train_set, batch_size=args.train_batch_size,num_workers=args.num_workers, shuffle=(train_sampler is None), drop_last=True, sampler = train_sampler)

RuntimeError: output with shape [1, 28, 28] doesn’t match the broadcast shape [3, 28, 28]

错误是因为图片格式是灰度图只有一个channel,需要变成RGB图才可以,所以需要在对图片的处理transforms里面修改:

transform = transforms.Compose([transforms.ToTensor(),transforms.Lambda(lambda x: x.repeat(3,1,1)),# 增加这一行transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])   

运行结果

将以上的代码拼接起来,就能够正常跑起来,我也已经在自己的电脑上验证过了。
image.png
image.png

当然了,上面画的是一次epoch的各个client的准确度,进行多次epoch的训练可以自己再修改。

这篇关于联邦学习在non-iid数据集上的划分和训练——从零开始实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038783

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环