动手学深度学习——Kaggle小白入门

2024-06-07 07:36

本文主要是介绍动手学深度学习——Kaggle小白入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. kaggle注册

注册网址:https://www.kaggle.com

注册账号不需要代理,但手机号验证需要代理。如果要使用GPU或TPU,则需要进行手机号验证。

手机号验证位置:右上角头像的settings界面。

手机号验证时会有几个问题:

  1. 无验证码,提示:Captcha must be filled out.
  • 原因:人机验证组件在国内被拦截,所以看不到验证按钮,需要代理才能看到人机身份验证
  1. 如果出现人机验证窗口,必须在代理状态下才能激活。一旦激活之后,必须切回正常状态,再进行国内的电话验证,不然代理的区域,跟验证电话的区域不一致,会报验证失败。

手验证完结果:PhoneVerification一栏必须是verified才可以。

更详细的手机验证方法见文章最后参考资料中的链接。

2. 新建notebook

写代码前需要先创建notebook。

创建完后操作界面如下图所示,左边为代码区,右边为数据区。

  • notebook创建完后,默认会自动创建两个目录:输入/kaggle/input和输出/kaggle/output。
  • 代码区会自动生成一段默认代码,功能是打印输入目录中的文件列表。

这个notebook的具体操作与jupyter notebook完全一致。

在这里插入图片描述
此notebook在创建时已经默认安装了python环境和pytorch库。
在这里插入图片描述

3. 传数据

模型训练都需要使用大批量的专用数据集,传数据可分为两种操作:

  • Add Input: 添加kaggle平台上已有数据集。
  • upload:上传数据集,支持本地压缩文件,也支持指定一个远程的URL来下载

不论哪种操作方式,传的数据都会保存到/kaggle/input文件夹中。

这里以Add Input为例来演示如何传数据。

添加好数据集后如下所示:

此时,我们运行代码区的默认代码,就能打印出刚添加的数据集文件列表。
在这里插入图片描述
可以尝试用pandas库来读取下数据:

具体pandas操作方法可参考:动手学深度学习——pandas

df = pd.read_csv("/kaggle/input/fashionmnist/fashion-mnist_train.csv")
print(df.shape)>>> (60000, 785)

可以看到,该数据集有60000行、785列。

再尝试读取下前三行数据的内容。

print(df.iloc[0:3,:])label  pixel1  pixel2  pixel3  pixel4  pixel5  pixel6  pixel7  pixel8  \
0      2       0       0       0       0       0       0       0       0   
1      9       0       0       0       0       0       0       0       0   
2      6       0       0       0       0       0       0       0       5   pixel9  ...  pixel775  pixel776  pixel777  pixel778  pixel779  pixel780  \
0       0  ...         0         0         0         0         0         0   
1       0  ...         0         0         0         0         0         0   
2       0  ...         0         0         0        30        43         0   pixel781  pixel782  pixel783  pixel784  
0         0         0         0         0  
1         0         0         0         0  
2         0         0         0         0  [3 rows x 785 columns]

FashionMnist是一个时装分类的图像数据集,每条数据的第一列为标签分类(0-9),表示10种时装分类。后面784列表示28x28图像展开后每一个像素的值。

iloc是pandas的一个切片操作,与python中的数组切片功能相似,不同的是:python中是对一维数组进行切片,iloc可以同时对多维数组进行切片。

4. 使用GPU

默认情况下,创建的notebook都是没有启用GPU的,可以通过简单API来查看运行环境上的CPU和GPU信息。

import os 
import torchprint(f"cpu nums:{os.cpu_count()}")# 检查是否有可用的 GPU
if torch.cuda.is_available():# 获取 GPU 设备信息for i in range(torch.cuda.device_count()):gpu = torch.cuda.get_device_properties(i)print("GPU {}:".format(i))print("型号:", gpu.name)print("核心数:", gpu.multi_processor_count)  # 核心数print("显存大小:", gpu.total_memory // (1024**2), "MB")  # 显存大小,转换为 MBprint("-----------")
else:print("没有可用的 GPU。")
cpu nums:4
没有可用的 GPU。

启用GPU: 右边的功能框找见Session options—>accelerator—>选择GPU T4 x2。

此时再运行上面的GPU设备检测代码,已经有了GPU设备信息:

cpu nums:4
GPU 0:
型号: Tesla T4
核心数: 40
显存大小: 15102 MB
-----------
GPU 1:
型号: Tesla T4
核心数: 40
显存大小: 15102 MB
-----------

简单使用下GPU做矩阵乘法运算:

GPU主要用来加速pytorch,tensorflow,pandas、numpy是不会加速的。

# 创建两个随机张量
a = torch.rand(3, 4)
b = torch.rand(4, 3)# 将张量移动到GPU上
if torch.cuda.is_available():a = a.cuda()b = b.cuda()c = torch.matmul(a, b)print(f"a: {a}")print(f"b: {b}")print(f"c: {c}")
a: tensor([[0.1732, 0.5473, 0.1821, 0.8392],[0.5551, 0.6203, 0.9935, 0.3267],[0.4213, 0.0994, 0.7320, 0.7110]], device='cuda:0')
b: tensor([[0.9064, 0.8337, 0.6155],[0.7991, 0.4399, 0.3409],[0.8997, 0.2004, 0.2329],[0.2817, 0.1979, 0.8481]], device='cuda:0')
c: tensor([[0.9946, 0.5877, 1.0473],[1.9847, 0.9994, 1.0616],[1.3201, 0.6824, 1.0667]], device='cuda:0')

可以看到,a、b、c三个矩阵均位于cuda 0号设备上。

CUDA是NVIDIA提供的一种GPU并行计算框架,在pytorch中使用 .cuda() 表示让我们的模型或者数据从CPU迁移到GPU上(默认是0号GPU),通过GPU开始计算。

5. 释放GPU

kaggle为每位用户只提供每周30h的免费GPU使用时间,所以用完后要及时手动释放来节省GPU可用时长。

注意:GPU使用时长的计算不是以实际运算时间来计,而是以用户绑定GPU设备的时长来计,这意味着哪怕你的代码没有在GPU上运行,只是简单绑定也会计算你的使用时长。

方式1:将Accelerator置为None来单独释放GPU设备。

方式2:停止会话来释放GPU设备。
在这里插入图片描述

如果直接关闭网页(没有执行上面的操作),GPU设备是不会及时释放的,只能等系统检测到设备空闲超时后才会释放,具体空闲超时时间数分钟到半个小时不等。

参考资料

  • 手机验证方法

这篇关于动手学深度学习——Kaggle小白入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038539

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与