Nyoj 530 K steps[矩阵乘法求两点k步的方案数]

2024-06-07 03:38

本文主要是介绍Nyoj 530 K steps[矩阵乘法求两点k步的方案数],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=530

题目的意思很是简单,给你一个图,n个节点m条边。。(n最大100,m最大1000)。。。问走k步,有多少种方案。。最后mod 1991。。。(k最大为1000)。。

对于每个图。。。每次询问l次。。(l最大1000)。。

需要注意的是有重边。。。并且重边是不同的。。。。。。

学习了一下。。。Matrix67大牛的总结。。很是在理。。。。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值
    把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

有点floyd的思想。。。。

有了这个知识背景,简直就是裸题。。。。。

Code:

 
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;const int N = 105;
const int mod = 1991;
struct Matrix
{int n;int a[N][N];Matrix() {memset(a, 0, sizeof(a));// kidding me .}Matrix(int ax){n = ax;memset(a, 0, sizeof(a));}
} ans, A;Matrix operator * (Matrix a, Matrix b)
{Matrix tmpans;tmpans.n = a.n;for(int i = 1; i <= a.n; i ++){for(int j = 1; j <= a.n; j ++){for(int k = 1; k <= a.n; k ++)tmpans.a[i][j] = (tmpans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
//            printf("k = %d\n", tmpans.a[i][j]);}}return tmpans;
}void power(int k)
{while(k){if(k & 1) ans = ans * A;A = A * A;k = k >> 1;}
}int main()
{
//    freopen("1.txt", "r", stdin);int T;cin >> T;while(T --){int n, m, k, l;memset(A.a, 0, sizeof(A.a));memset(ans.a, 0, sizeof(ans.a));cin >> n >> m >> k >> l;A.n = n; ans.n = n;int x, y;for(int i = 1; i <= m; i ++){cin >> x >> y;A.a[x][y] = A.a[x][y] + 1;}for(int i = 1; i <= n; i ++){ans.a[i][i] = 1;}power(k);for(int i = 1; i <= l; i ++){cin >> x >> y;cout << ans.a[x][y] % mod << endl;}}return 0;
}


Matrix67大牛是总结还剩下最后一个。。。+u。。。明天就要看完了。。。

这篇关于Nyoj 530 K steps[矩阵乘法求两点k步的方案数]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038070

相关文章

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1