Nyoj 530 K steps[矩阵乘法求两点k步的方案数]

2024-06-07 03:38

本文主要是介绍Nyoj 530 K steps[矩阵乘法求两点k步的方案数],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=530

题目的意思很是简单,给你一个图,n个节点m条边。。(n最大100,m最大1000)。。。问走k步,有多少种方案。。最后mod 1991。。。(k最大为1000)。。

对于每个图。。。每次询问l次。。(l最大1000)。。

需要注意的是有重边。。。并且重边是不同的。。。。。。

学习了一下。。。Matrix67大牛的总结。。很是在理。。。。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值
    把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

有点floyd的思想。。。。

有了这个知识背景,简直就是裸题。。。。。

Code:

 
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;const int N = 105;
const int mod = 1991;
struct Matrix
{int n;int a[N][N];Matrix() {memset(a, 0, sizeof(a));// kidding me .}Matrix(int ax){n = ax;memset(a, 0, sizeof(a));}
} ans, A;Matrix operator * (Matrix a, Matrix b)
{Matrix tmpans;tmpans.n = a.n;for(int i = 1; i <= a.n; i ++){for(int j = 1; j <= a.n; j ++){for(int k = 1; k <= a.n; k ++)tmpans.a[i][j] = (tmpans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;
//            printf("k = %d\n", tmpans.a[i][j]);}}return tmpans;
}void power(int k)
{while(k){if(k & 1) ans = ans * A;A = A * A;k = k >> 1;}
}int main()
{
//    freopen("1.txt", "r", stdin);int T;cin >> T;while(T --){int n, m, k, l;memset(A.a, 0, sizeof(A.a));memset(ans.a, 0, sizeof(ans.a));cin >> n >> m >> k >> l;A.n = n; ans.n = n;int x, y;for(int i = 1; i <= m; i ++){cin >> x >> y;A.a[x][y] = A.a[x][y] + 1;}for(int i = 1; i <= n; i ++){ans.a[i][i] = 1;}power(k);for(int i = 1; i <= l; i ++){cin >> x >> y;cout << ans.a[x][y] % mod << endl;}}return 0;
}


Matrix67大牛是总结还剩下最后一个。。。+u。。。明天就要看完了。。。

这篇关于Nyoj 530 K steps[矩阵乘法求两点k步的方案数]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038070

相关文章

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应