【贡献度分析(帕累托图)】

2024-06-07 02:36
文章标签 分析 贡献度 帕累 托图

本文主要是介绍【贡献度分析(帕累托图)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、贡献度分析是什么?
  • 二、使用步骤
    • 1. 准备数据
    • 2. 排序数据
    • 3. 绘制帕累托图
    • 4. 分析结果
    • 5. 实际应用
  • 三、示例代码


前言

贡献度分析也称为帕累托分析。它可以帮助我们理解数据集中各个因素对整体影响的程度,从而优先处理最重要的因素,达到事半功倍的效果。


一、贡献度分析是什么?

贡献度分析源自于意大利经济学家维尔弗雷多·帕累托的名字,他在20世纪初提出了“20/80定律”,即80%的结果来自于20%的原因。贡献度分析通过绘制帕累托图,将数据按照重要性排序,揭示出影响最大的关键因素,有助于决策者更好地分配资源和精力。

二、使用步骤

1. 准备数据

首先准备要分析的数据集,可以是销售额、成本、客户数量等各种业务指标。

2. 排序数据

将数据按照重要性进行排序,可以是按照金额大小、数量多少等指标。

3. 绘制帕累托图

利用排序后的数据绘制帕累托图,横轴表示因素,纵轴表示累积贡献度,通常用累积百分比表示。同时,在图上添加累积百分比曲线,以便更直观地观察数据分布。

4. 分析结果

根据帕累托图的结果,可以清晰地看出哪些因素对整体影响最大,从而有针对性地进行决策和优化。

5. 实际应用

贡献度分析在各个领域都有广泛的应用,比如销售管理、生产管理、客户管理等。通过识别关键因素,可以帮助企业更加高效地运营和管理。

三、示例代码

import pandas as pd
import matplotlib.pyplot as plt# 准备数据
data = {'因素': ['A', 'B', 'C', 'D', 'E'],'金额': [100, 80, 60, 40, 20]
}
df = pd.DataFrame(data)# 排序数据
df_sorted = df.sort_values(by='金额', ascending=False)
df_sorted['累积百分比'] = df_sorted['金额'].cumsum() / df_sorted['金额'].sum() * 100
print(df_sorted)# 绘制帕累托图
fig, ax1 = plt.subplots()# 设置中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
color = 'tab:red'
ax1.bar(df_sorted['因素'], df_sorted['金额'], color=color)
ax1.set_xlabel('因素')
ax1.set_ylabel('金额', color=color)
ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx()
color = 'tab:blue'
ax2.plot(df_sorted['因素'], df_sorted['累积百分比'], color=color, marker='o')
ax2.set_ylabel('累积百分比', color=color)
ax2.tick_params(axis='y', labelcolor=color)plt.title('贡献度分析(帕累托图)')
plt.show()

这篇关于【贡献度分析(帕累托图)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037947

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串