九大微服务监控工具详解

2024-06-07 01:28

本文主要是介绍九大微服务监控工具详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Prometheus

Prometheus 是一个开源的系统监控、和报警工具包,Prometheus 被设计用来监控“微服务架构”。

图片

主要解决:

  1. 监控和告警:Prometheus 可以对系统、和应用程序进行实时监控,并在出现问题时发送告警;
  2. 数据收集和存储:它通过各种方式(如HTTP接口、推送网关......等)收集指标数据,并将其存储在时间序列数据库中。
  3. 查询和可视化:Prometheus 支持与Grafana等可视化工具的集成,用户可以通过Grafana创建漂亮的仪表盘,以图形化方式展示监控数据。
  4. 扩展和集成:Prometheus 提供丰富的集成和扩展机制,可以与多种外部系统和工具(如:Kubernetes、Docker、Consul。。。。。等)进行无缝集成。

主要特点:

  • 拉模式(Pull)数据采集;
  • 强大的告警管理;
  • 易于与 Kubernetes 等容器编排工具集成;

总之,Prometheus 通过其强大的多维数据模型、灵活的查询语言、和可扩展的数据收集方式,成为了现代监控系统中的重要工具。

ELK Stack

ELK Stack 是一套开源的日志分析和管理工具集,由 Elasticsearch、Logstash 、和 Kibana 组成。

图片

它们共同工作来收集、处理、存储和可视化日志数据,帮助用户进行实时搜索、分析和监控。

Elasticsearch

Elasticsearch 是一个分布式、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 开发。

它能够处理大规模的数据,并提供高效的实时搜索、和分析能力。

擅长于处理、和存储大规模的结构化、和非结构化数据。

Logstash

一个数据收集和处理管道,用于从多个来源收集数据,进行转换并发送到指定存储(通常是:Elasticsearch)。

Kibana

一个数据可视化工具,提供了丰富的图表、和仪表盘,用于展示、和分析存储在 Elasticsearch 中的数据。

在 ELK Stack 中,Elasticsearch、Logstash 和 Kibana 结合使用,形成一个完整的日志分析和管理解决方案。

SkyWalking

SkyWalking 是一个开源的 APM(应用性能监控)、和 OAP(可观测性分析平台)工具。

主要用于:帮助开发者、和运维人员,实时监控、和分析微服务架构中的性能、和健康状况。

图片

支持分布式追踪、性能指标监控、日志管理等功能。

  1. 分布式追踪:捕获和分析跨越多个微服务的请求路径,提供端到端的调用链视图;
  2. 性能监控:监控系统的性能指标,如:响应时间、吞吐量、错误率......等,帮助识别和优化性能瓶颈;
  3. 日志管理:收集和分析日志数据,提供日志关联追踪,帮助快速定位、和解决问题;
  4. 服务依赖分析:展示服务之间的调用关系,帮助理解服务间的依赖、和交互。

Grafana

Grafana 是一个开源的数据可视化和监控工具,广泛用于监控基础设施、应用性能,以及业务指标。

通过支持多种数据源(如:Prometheus、Graphite、InfluxDB、Elasticsearch......等),实时监控系统状态、应用性能、和业务指标。

如下图所示:

图片

通过与 Prometheus 等数据源的集成,Grafana 可以提供实时的系统监控和告警,帮助用户及时发现和解决问题,提升系统可靠性、和性能。

主要解决,以下4大场景:

  • 数据可视化:通过丰富的图表、和面板,Grafana 可以将数据源中的数据,以多种图形化方式展示;

图片

  • 监控和告警:除此之外,Grafana 还提供了灵活的告警机制,用户可以基于数据设置告警规则,当条件满足时发送通知;
  • 多数据源支持:支持包括:Prometheus、InfluxDB、Graphite、Elasticsearch、MySQL、PostgreSQL.....等在内的多种数据源;
  • 交互式仪表盘:用户可以创建动态、可交互的仪表盘,支持变量和模板化,方便不同环境下的应用。

Zipkin

Zipkin 是一个开源的分布式追踪系统,最初由 Twitter 开发,用于帮助开发者、和运维人员了解微服务架构中请求的传播路径、性能瓶颈、和故障点。

如下图所示:

图片

Zipkin 收集器接收数据,并将其存储到后台存储中,比如:Elasticsearch、Cassandra、MySQL ...等。

然后,Zipkin 提供 Web UI,展示追踪数据的调用链视图,帮助用户直观地理解请求在各服务间的流动情况。

主要解决,以下4大场景:

  1. 分布式追踪:捕获、和记录跨越多个服务的请求路径,提供端到端的调用链视图;
  2. 性能分析:识别请求在各服务间的延迟,帮助优化系统性能;
  3. 故障排除:快速定位系统中引起错误、或延迟的服务,缩短故障排查时间;
  4. 可视化追踪数据:通过可视化工具展示请求的传播路径、和各节点的延迟,提供直观的数据分析。

Jaeger

Jaeger 是一个开源的端到端分布式追踪系统,用于监控、和故障排除微服务架构。

主要解决:

  • 追踪请求的路径、和延迟;
  • 分析系统的瓶颈、和性能问题;
  • 可视化请求的完整调用链。

Datadog

Datadog 是一个基于 SaaS 的监控和分析平台,覆盖基础设施监控、应用性能监控(APM)、和日志管理。

主要解决:

  • 实时监控和告警;
  • 整合基础设施和应用数据;
  • 数据可视化、和分析。

这些监控工具各自具有独特的功能、和优势,适用于不同的监控需求、和场景,可以根据自己的情况来选择。

这篇关于九大微服务监控工具详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037790

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (