LLama2源码分析——Rotary Position Embedding分析

2024-06-07 00:36

本文主要是介绍LLama2源码分析——Rotary Position Embedding分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:一文看懂 LLaMA 中的旋转式位置编码(Rotary Position Embedding)

原理推导参考自上文,以下结合huggingface代码分析公式计算过程

1 旋转角度计算

计算公式如下,其中d为词嵌入维度,这部分和论文原文一样
θ j = 1000 0 − 2 ( j − 1 ) / d , j ∈ [ 1 , 2 , … , d / 2 ] \theta_j=10000^{-2(j-1)/d},j\in [1,2,\ldots,d/2] θj=100002(j1)/d,j[1,2,,d/2]

# 计算词向量元素两两分组之后,每组元素对应的旋转角度
# 维度:[dim / 2]
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))

2 计算整个seq的cos_sin矩阵

def _set_cos_sin_cache(self, seq_len, device, dtype):self.max_seq_len_cached = seq_len# 生成token长度序列t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)# 计算两个矩阵的外积,结果维度[seq_len, dim // 2]freqs = torch.einsum("i,j->ij", t, self.inv_freq)# 类似[[0, 2, 4, ..., 0, 2, 4, ...], ...]形式,旋转角度两两一组相同emb = torch.cat((freqs, freqs), dim=-1)self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

3 计算旋转式位置编码

f q ( x m , m ) = ( W q x m ) e i m θ f k ( x n , n ) = ( W k x n ) e i n θ \begin{aligned}f_q(x_m,m)&=(W_qx_m)e^{im\theta} \\f_k(x_n,n)&=(W_kx_n)e^{in\theta}\end{aligned} fq(xm,m)fk(xn,n)=(Wqxm)eimθ=(Wkxn)einθ
公式根据欧拉公式转化后为
( q m ( 1 ) + i q m ( 2 ) ) ∗ ( cos ⁡ ( m θ ) + i sin ⁡ ( m θ ) ) (q_{m}^{(1)}+iq_{m}^{(2)})*(\cos(m\theta)+i\sin(m\theta)) (qm(1)+iqm(2))(cos(mθ)+isin(mθ))

展开后将结果重新表示为实数向量即为
q m e i m θ = [ q m ( 1 ) cos ⁡ ( m θ ) − q m ( 2 ) sin ⁡ ( m θ ) , q m ( 2 ) cos ⁡ ( m θ ) + q m ( 1 ) sin ⁡ ( m θ ) ] q_me^{im\theta}=[q_m^{(1)}\cos(m\theta)-q_m^{(2)}\sin(m\theta),q_m^{(2)}\cos(m\theta)+q_m^{(1)}\sin(m\theta)] qmeimθ=[qm(1)cos(mθ)qm(2)sin(mθ),qm(2)cos(mθ)+qm(1)sin(mθ)]
key的计算同理,以上公式是2维embedding的旋转编码计算,实际代码中是将高纬度的embedding两两分组按照上述公式计算,同一组内的旋转角度相同,此处Llama代码中的分组计算方式与论文原文有所区别,论文原文中是将embedding_dim维度(最后一维)的向量按照相邻两个位置数字为一组,可以按照如下代码理解

>>> a
tensor([[1, 2, 3, 4, 5, 6, 7, 8],[1, 2, 3, 4, 5, 6, 7, 8]])
>>> a.view(2, -1, 2)
tensor([[[1, 2],[3, 4],[5, 6],[7, 8]],[[1, 2],[3, 4],[5, 6],[7, 8]]])

因此,单个token的位置编码是如下图方式计算
image
但以上的R矩阵比较稀疏,计算时浪费大量算力,因此Llama中采用不同的方式计算

  • Llama源码中计算方法

( q 0 q 1 ⋮ q d / 2 − 1 q d / 2 q d / 2 + 1 ⋮ q d − 1 ) ⊗ ( cos ⁡ m θ 0 cos ⁡ m θ 2 cos ⁡ m θ 4 ⋮ cos ⁡ m θ d − 2 cos ⁡ m θ 0 cos ⁡ m θ 2 ⋮ cos ⁡ m θ d − 2 ) + ( − q d / 2 − q d / 2 + 1 ⋮ − q d − 1 q 1 q 2 ⋮ q d / 2 − 1 ) ⊗ ( sin ⁡ m θ 0 sin ⁡ m θ 2 sin ⁡ m θ 4 ⋮ sin ⁡ m θ d − 2 sin ⁡ m θ 0 sin ⁡ m θ 2 ⋮ sin ⁡ m θ d − 2 ) \begin{pmatrix} {q_0}\\{q_1}\\{\vdots}\\{q_{d/2-1}}\\{q_{d/2}}\\{q_{d/2+1}}\\{\vdots}\\{q_{d-1}} \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_0\\\cos m\theta_2\\\cos m\theta_4\\\vdots\\\cos m\theta_{d-2}\\\cos m\theta_0\\\cos m\theta_2\\\vdots\\\cos m\theta_{d-2} \end{pmatrix} + \begin{pmatrix} {-q_{d/2}}\\{-q_{d/2+1}}\\\vdots\\{-q_{d-1}}\\{q_{1}}\\{q_{2}}\\\vdots\\{q_{d/2-1}} \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_0\\\sin m\theta_2\\\sin m\theta_4\\\vdots\\\sin m\theta_{d-2}\\\sin m\theta_0\\\sin m\theta_2\\\vdots\\\sin m\theta_{d-2} \end{pmatrix} q0q1qd/21qd/2qd/2+1qd1 cosmθ0cosmθ2cosmθ4cosmθd2cosmθ0cosmθ2cosmθd2 + qd/2qd/2+1qd1q1q2qd/21 sinmθ0sinmθ2sinmθ4sinmθd2sinmθ0sinmθ2sinmθd2

def rotate_half(x):"""Rotates half the hidden dims of the input."""x1 = x[..., : x.shape[-1] // 2]x2 = x[..., x.shape[-1] // 2 :]return torch.cat((-x2, x1), dim=-1)def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):cos = cos[position_ids].unsqueeze(unsqueeze_dim)sin = sin[position_ids].unsqueeze(unsqueeze_dim)q_embed = (q * cos) + (rotate_half(q) * sin)k_embed = (k * cos) + (rotate_half(k) * sin)return q_embed, k_embed

这篇关于LLama2源码分析——Rotary Position Embedding分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037685

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类