LLama2源码分析——Rotary Position Embedding分析

2024-06-07 00:36

本文主要是介绍LLama2源码分析——Rotary Position Embedding分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:一文看懂 LLaMA 中的旋转式位置编码(Rotary Position Embedding)

原理推导参考自上文,以下结合huggingface代码分析公式计算过程

1 旋转角度计算

计算公式如下,其中d为词嵌入维度,这部分和论文原文一样
θ j = 1000 0 − 2 ( j − 1 ) / d , j ∈ [ 1 , 2 , … , d / 2 ] \theta_j=10000^{-2(j-1)/d},j\in [1,2,\ldots,d/2] θj=100002(j1)/d,j[1,2,,d/2]

# 计算词向量元素两两分组之后,每组元素对应的旋转角度
# 维度:[dim / 2]
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))

2 计算整个seq的cos_sin矩阵

def _set_cos_sin_cache(self, seq_len, device, dtype):self.max_seq_len_cached = seq_len# 生成token长度序列t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)# 计算两个矩阵的外积,结果维度[seq_len, dim // 2]freqs = torch.einsum("i,j->ij", t, self.inv_freq)# 类似[[0, 2, 4, ..., 0, 2, 4, ...], ...]形式,旋转角度两两一组相同emb = torch.cat((freqs, freqs), dim=-1)self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

3 计算旋转式位置编码

f q ( x m , m ) = ( W q x m ) e i m θ f k ( x n , n ) = ( W k x n ) e i n θ \begin{aligned}f_q(x_m,m)&=(W_qx_m)e^{im\theta} \\f_k(x_n,n)&=(W_kx_n)e^{in\theta}\end{aligned} fq(xm,m)fk(xn,n)=(Wqxm)eimθ=(Wkxn)einθ
公式根据欧拉公式转化后为
( q m ( 1 ) + i q m ( 2 ) ) ∗ ( cos ⁡ ( m θ ) + i sin ⁡ ( m θ ) ) (q_{m}^{(1)}+iq_{m}^{(2)})*(\cos(m\theta)+i\sin(m\theta)) (qm(1)+iqm(2))(cos(mθ)+isin(mθ))

展开后将结果重新表示为实数向量即为
q m e i m θ = [ q m ( 1 ) cos ⁡ ( m θ ) − q m ( 2 ) sin ⁡ ( m θ ) , q m ( 2 ) cos ⁡ ( m θ ) + q m ( 1 ) sin ⁡ ( m θ ) ] q_me^{im\theta}=[q_m^{(1)}\cos(m\theta)-q_m^{(2)}\sin(m\theta),q_m^{(2)}\cos(m\theta)+q_m^{(1)}\sin(m\theta)] qmeimθ=[qm(1)cos(mθ)qm(2)sin(mθ),qm(2)cos(mθ)+qm(1)sin(mθ)]
key的计算同理,以上公式是2维embedding的旋转编码计算,实际代码中是将高纬度的embedding两两分组按照上述公式计算,同一组内的旋转角度相同,此处Llama代码中的分组计算方式与论文原文有所区别,论文原文中是将embedding_dim维度(最后一维)的向量按照相邻两个位置数字为一组,可以按照如下代码理解

>>> a
tensor([[1, 2, 3, 4, 5, 6, 7, 8],[1, 2, 3, 4, 5, 6, 7, 8]])
>>> a.view(2, -1, 2)
tensor([[[1, 2],[3, 4],[5, 6],[7, 8]],[[1, 2],[3, 4],[5, 6],[7, 8]]])

因此,单个token的位置编码是如下图方式计算
image
但以上的R矩阵比较稀疏,计算时浪费大量算力,因此Llama中采用不同的方式计算

  • Llama源码中计算方法

( q 0 q 1 ⋮ q d / 2 − 1 q d / 2 q d / 2 + 1 ⋮ q d − 1 ) ⊗ ( cos ⁡ m θ 0 cos ⁡ m θ 2 cos ⁡ m θ 4 ⋮ cos ⁡ m θ d − 2 cos ⁡ m θ 0 cos ⁡ m θ 2 ⋮ cos ⁡ m θ d − 2 ) + ( − q d / 2 − q d / 2 + 1 ⋮ − q d − 1 q 1 q 2 ⋮ q d / 2 − 1 ) ⊗ ( sin ⁡ m θ 0 sin ⁡ m θ 2 sin ⁡ m θ 4 ⋮ sin ⁡ m θ d − 2 sin ⁡ m θ 0 sin ⁡ m θ 2 ⋮ sin ⁡ m θ d − 2 ) \begin{pmatrix} {q_0}\\{q_1}\\{\vdots}\\{q_{d/2-1}}\\{q_{d/2}}\\{q_{d/2+1}}\\{\vdots}\\{q_{d-1}} \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_0\\\cos m\theta_2\\\cos m\theta_4\\\vdots\\\cos m\theta_{d-2}\\\cos m\theta_0\\\cos m\theta_2\\\vdots\\\cos m\theta_{d-2} \end{pmatrix} + \begin{pmatrix} {-q_{d/2}}\\{-q_{d/2+1}}\\\vdots\\{-q_{d-1}}\\{q_{1}}\\{q_{2}}\\\vdots\\{q_{d/2-1}} \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_0\\\sin m\theta_2\\\sin m\theta_4\\\vdots\\\sin m\theta_{d-2}\\\sin m\theta_0\\\sin m\theta_2\\\vdots\\\sin m\theta_{d-2} \end{pmatrix} q0q1qd/21qd/2qd/2+1qd1 cosmθ0cosmθ2cosmθ4cosmθd2cosmθ0cosmθ2cosmθd2 + qd/2qd/2+1qd1q1q2qd/21 sinmθ0sinmθ2sinmθ4sinmθd2sinmθ0sinmθ2sinmθd2

def rotate_half(x):"""Rotates half the hidden dims of the input."""x1 = x[..., : x.shape[-1] // 2]x2 = x[..., x.shape[-1] // 2 :]return torch.cat((-x2, x1), dim=-1)def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):cos = cos[position_ids].unsqueeze(unsqueeze_dim)sin = sin[position_ids].unsqueeze(unsqueeze_dim)q_embed = (q * cos) + (rotate_half(q) * sin)k_embed = (k * cos) + (rotate_half(k) * sin)return q_embed, k_embed

这篇关于LLama2源码分析——Rotary Position Embedding分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037685

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb