数据资产入表-数据治理-指标建设标准

2024-06-07 00:12

本文主要是介绍数据资产入表-数据治理-指标建设标准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       前情提要:数据价值管理是指通过一系列管理策略和技术手段,帮助企业把庞大的、无序的、低价值的数据资源转变为高价值密度的数据资产的过程,即数据治理和价值变现。上一讲介绍了标签标准设计的基本逻辑和思路。数据资产入表-数据治理-标签设计标准

本章重点讲解指标建设标准设计

       指标数据是为了基于场景出发,为了满足内部分析决策或者外部使用的一个高度凝练的数据结果集,指标数据标准是为满足管理指标生产过程、对基础类数据加工而产生的指标数据标准化规范。

       数据分析师或者数仓治理人员常常会听到”统计结果不对”、”这个指标没有”、”这个指标怎么用?”的灵魂拷问。在做了问题定位之后,除了真的指标缺失之外,还有以下三张情形:

       ①指标名称不规范:当指标生产了一段时间,有了初步沉淀后,发现存量指标的名称千奇百怪,各有各的风格,这个是在指标设计之初对于指标的命名没有做出对应的规范(做出规范的同时需要有工具支撑);

       ②指标重复建设:在盘点指标的过程中,发现指标因名称不规范、单位不规范等原因,同一个指标出现多次建设的情况;

       ③指标口径不清晰:在指标使用的过程中,发现指标命名长得相似,但是不知道具体含义,也不清楚哪个指标适用于哪个场景;

       因此需要构建一套指标数据标准,帮助我们在指标体系搭建的过程中和用户使用的过程中更为清晰明了。

指标数据标准建设

       指标数据标准是为满足内部分析管理需要和外部监管要求,对基础类数据加工而产生的指标数据标准化规范。指标数据标准通过基础属性、业务属性、技术属性和管理属性来描述指标数据规范化要求。--引用《JR/T0137-2017银行经营管理指标数据元》

指标类型

       指标的梳理还是离不开实体的确认,实体在指标体系中是指标统计的对象,在指标体系梳理的过程中,在业务的角度上把指标分为原子指标、复合指标、派生指标;

       原子指标:是针对实体对象的基础统计值;例如(企业数量)

       复合指标:是在原子指标的基础上,增加属性维度的统计;例如(杭州市:企业数量;杭州市:新成立企业数量)

       派生指标:是在原子指标、复合指标的基础上,进行复合计算的派生指标;例如(杭州市:企业数量累计同比)

指标体系搭建

       指标体系的搭建一般是业务运行一段时间后,对于明细数据有一定沉淀,且业务人员在实际业务管理过程中存在一定的场景需求之后,才有具体的指标体系搭建场景。指标体系搭建的步骤如下:

step1:场景/业务需求收集和调研

        在业务收集的过程中,需要用户明确的内容包含指标统计的场景描述、统计的时间范围、统计的类型(要当前值、同比值、累计值、环比值)、统计的区域(若业务上没有,可忽略),平常使用的频率,如果是金额维度,需要描述统计的单元;

step2:在收集和调研业务需求后,开始梳理指标体系,需要基于业务需求拆解核心信息

 ①确定原子指标:明确出来业务需求中需要统计的实体;

 ②确定复合属性:明确统计口径中包含的修饰维度,其中需要区分出常用修饰维度和使用率较低的属性;

 ③确定统计口径:基于需求确定统计时间、统计类型的口径;

 ④输出指标清单:基于上述的信息收集和梳理,生成版本号、构建指标名称模板、统计单位、计算类型、指标释义、指标计算规则、更新频率等;

  1. 版本号:是指本次指标逻辑操作的次数记录,一般依托于工具生成;
  2. 指标名称模板:在指标生产的过程中,一般不会一个个罗列指标进行生产,会采用group by 的逻辑分类统计,因此在我们输出需求清单的时候,可能不是实际的指标名称,而是指标名称的模板,需要在命名的时候给分类修饰词留下占位符;
  3. 指标类型:描述指标的类型是属于原子指标、复合指标,派生指标
  4. 业务标签:描述业务标签类型,业务标签类型背后可以映射一张标签结果表;
  5. 计算类型:指的是这个指标是基于count、sum、avg等类型计算而成;
  6. 指标释义:需要描述指标的统计维度,包含的必要维度有统计实体、参与统计的业务标签;
  7. 实体所在明细表:顾名思义是被统计实体的明细表表名;
  8. 计算规则:是指该指标的计算规则;
  9. 单位:描述指标的单位信息;
  10. 更新频率:指定指标计算的频率;结合明细表的更新频率,指标的计算频率要低于明细表的更新频率;
  11. 负责人:明确该指标的业务负责人名称;

 step3:推动开发和验收:基于输出的需求清单推动开发和验收上线;

指标梳理流程

这篇关于数据资产入表-数据治理-指标建设标准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037632

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr