数据资产入表-数据治理-指标建设标准

2024-06-07 00:12

本文主要是介绍数据资产入表-数据治理-指标建设标准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       前情提要:数据价值管理是指通过一系列管理策略和技术手段,帮助企业把庞大的、无序的、低价值的数据资源转变为高价值密度的数据资产的过程,即数据治理和价值变现。上一讲介绍了标签标准设计的基本逻辑和思路。数据资产入表-数据治理-标签设计标准

本章重点讲解指标建设标准设计

       指标数据是为了基于场景出发,为了满足内部分析决策或者外部使用的一个高度凝练的数据结果集,指标数据标准是为满足管理指标生产过程、对基础类数据加工而产生的指标数据标准化规范。

       数据分析师或者数仓治理人员常常会听到”统计结果不对”、”这个指标没有”、”这个指标怎么用?”的灵魂拷问。在做了问题定位之后,除了真的指标缺失之外,还有以下三张情形:

       ①指标名称不规范:当指标生产了一段时间,有了初步沉淀后,发现存量指标的名称千奇百怪,各有各的风格,这个是在指标设计之初对于指标的命名没有做出对应的规范(做出规范的同时需要有工具支撑);

       ②指标重复建设:在盘点指标的过程中,发现指标因名称不规范、单位不规范等原因,同一个指标出现多次建设的情况;

       ③指标口径不清晰:在指标使用的过程中,发现指标命名长得相似,但是不知道具体含义,也不清楚哪个指标适用于哪个场景;

       因此需要构建一套指标数据标准,帮助我们在指标体系搭建的过程中和用户使用的过程中更为清晰明了。

指标数据标准建设

       指标数据标准是为满足内部分析管理需要和外部监管要求,对基础类数据加工而产生的指标数据标准化规范。指标数据标准通过基础属性、业务属性、技术属性和管理属性来描述指标数据规范化要求。--引用《JR/T0137-2017银行经营管理指标数据元》

指标类型

       指标的梳理还是离不开实体的确认,实体在指标体系中是指标统计的对象,在指标体系梳理的过程中,在业务的角度上把指标分为原子指标、复合指标、派生指标;

       原子指标:是针对实体对象的基础统计值;例如(企业数量)

       复合指标:是在原子指标的基础上,增加属性维度的统计;例如(杭州市:企业数量;杭州市:新成立企业数量)

       派生指标:是在原子指标、复合指标的基础上,进行复合计算的派生指标;例如(杭州市:企业数量累计同比)

指标体系搭建

       指标体系的搭建一般是业务运行一段时间后,对于明细数据有一定沉淀,且业务人员在实际业务管理过程中存在一定的场景需求之后,才有具体的指标体系搭建场景。指标体系搭建的步骤如下:

step1:场景/业务需求收集和调研

        在业务收集的过程中,需要用户明确的内容包含指标统计的场景描述、统计的时间范围、统计的类型(要当前值、同比值、累计值、环比值)、统计的区域(若业务上没有,可忽略),平常使用的频率,如果是金额维度,需要描述统计的单元;

step2:在收集和调研业务需求后,开始梳理指标体系,需要基于业务需求拆解核心信息

 ①确定原子指标:明确出来业务需求中需要统计的实体;

 ②确定复合属性:明确统计口径中包含的修饰维度,其中需要区分出常用修饰维度和使用率较低的属性;

 ③确定统计口径:基于需求确定统计时间、统计类型的口径;

 ④输出指标清单:基于上述的信息收集和梳理,生成版本号、构建指标名称模板、统计单位、计算类型、指标释义、指标计算规则、更新频率等;

  1. 版本号:是指本次指标逻辑操作的次数记录,一般依托于工具生成;
  2. 指标名称模板:在指标生产的过程中,一般不会一个个罗列指标进行生产,会采用group by 的逻辑分类统计,因此在我们输出需求清单的时候,可能不是实际的指标名称,而是指标名称的模板,需要在命名的时候给分类修饰词留下占位符;
  3. 指标类型:描述指标的类型是属于原子指标、复合指标,派生指标
  4. 业务标签:描述业务标签类型,业务标签类型背后可以映射一张标签结果表;
  5. 计算类型:指的是这个指标是基于count、sum、avg等类型计算而成;
  6. 指标释义:需要描述指标的统计维度,包含的必要维度有统计实体、参与统计的业务标签;
  7. 实体所在明细表:顾名思义是被统计实体的明细表表名;
  8. 计算规则:是指该指标的计算规则;
  9. 单位:描述指标的单位信息;
  10. 更新频率:指定指标计算的频率;结合明细表的更新频率,指标的计算频率要低于明细表的更新频率;
  11. 负责人:明确该指标的业务负责人名称;

 step3:推动开发和验收:基于输出的需求清单推动开发和验收上线;

指标梳理流程

这篇关于数据资产入表-数据治理-指标建设标准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037632

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创