pytorch中的维度变换操作性质大总结:view, reshape, transpose, permute

本文主要是介绍pytorch中的维度变换操作性质大总结:view, reshape, transpose, permute,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在深度学习中,张量的维度变换是很重要的操作。在pytorch中,有四个用于维度变换的函数,view, reshape, transpose, permute。其中view, reshape都用于改变张量的形状,transpose, permute都用于重新排列张量的维度,但它们的功能和使用场景有所不同,下面将进行详细介绍,并给出测试验证代码,经过全面的了解,我们才能知道如何正确的使用这四个函数。

这里写目录标题

    • 1. torch.Tensor.view
    • 2. torch.reshape
    • 3. torch.transpose
    • 4. torch.permute
    • 5. torch.transpose与torch.permute的性质与原理

1. torch.Tensor.view

文档:Doc

  • view 方法返回一个新的张量,具有与原始张量相同的数据,但改变了形状。所以view返回的是原始数据的一个新尺寸的视图,这也就是为什么叫做view。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将其调整为3x4的形状
    y = x.view(3, 4)
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    # 判断新旧张量是否数据是相同的
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    x shape:  torch.Size([2, 6])
    y shape:  torch.Size([3, 4])
    True
    
  • view 要求原始张量是连续的(即在内存中是按顺序存储的),否则会抛出错误。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将向量转置,此时x不再是连续的
    x = x.T
    # 在不连续的张量上进行view将会报错
    y = x.view(3, 4)
    
    报错输出:
    RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
    
  • 如果张量不是连续的,可以使用 contiguous 方法先将其转换为连续的。

2. torch.reshape

文档:Doc

  • reshape不要求原始张量是连续的
  • 如果原始张量是连续的,那么实现的功能和view一样
  • 如果原始张量不是连续的,那么reshape就是tensor.contigous().view(),也就是会重新开辟一块内存空间,拷贝原始张量,使其连续;
  • 在连续张量上,view 和 reshape 性能相同。在非连续张量上,reshape 可能会稍慢一些,因为它可能需要创建新的连续张量。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将向量转置,此时x不再是连续的
    x = x.T
    # 在不连续的张量上可以进行reshape
    y = x.reshape(3, 4)
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    # 但reshape返回的是新的内存中的张量
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    x shape:  torch.Size([6, 2])
    y shape:  torch.Size([3, 4])
    False
    

3. torch.transpose

Doc

  • 功能:仅用于交换两个维度。它接受两个维度参数,分别表示要交换的维度。
  • 不改变数据:不会改变数据本身,只是改变数据的视图(即不复制数据)。
  • 生成的新张量也通常不是连续的。它只是交换两个维度的顺序,不改变数据在内存中的实际存储顺序。
  • 对原始张量是不是连续的没有要求
    import torch
    # 创建一个3x4的张量
    x = torch.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])
    print(x.is_contiguous())
    # 交换第一个和第二个维度
    y = torch.transpose(x, 0, 1)
    print(y.is_contiguous())
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    True
    False
    x shape:  torch.Size([3, 4])
    y shape:  torch.Size([4, 3])
    True
    

4. torch.permute

Doc

  • 可以重新排列任意数量的维度,适用于复杂的维度变换。接受一个shape元组作为参数
  • 不改变数据:不会改变数据本身,只是改变数据的视图(即不复制数据)
  • 生成的新张量通常不是连续的。因为它仅改变维度顺序,不改变数据在内存中的实际顺序。
  • 对原始张量是不是连续的没有要求
    	import torch# 创建一个3x4x5的张量x = torch.randn(3, 4, 5)# 将其第一个和第二个维度交换y = torch.permute(x, (1, 0, 2))print(y.is_contiguous())print(x.data_ptr() == y.data_ptr())print(y.size())  # 输出:torch.Size([4, 3, 5])
    
    输出:
    False
    True
    torch.Size([4, 3, 5])
    

5. torch.transpose与torch.permute的性质与原理

这两者的功能和各方面的性质基本是相同的,只是一个只能交换两个维度,一个能进行更复杂的维度排列。他们的原理是:transpose 和 permute 通过改变张量的 strides(步幅)来重新排列维度。strides 定义了在内存中沿着每个维度移动的步长。它们不改变张量的数据,只是改变了访问数据的方式。因此,这些操作可以应用于任何张量,无论它们是否连续。

这篇关于pytorch中的维度变换操作性质大总结:view, reshape, transpose, permute的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1037317

相关文章

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce