Kaggle——Deep Learning(使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络)

本文主要是介绍Kaggle——Deep Learning(使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 1.单个神经元

创建一个具有1个线性单元的网络

#线性单元
from tensorflow import keras
from tensorflow.keras import layers
#创建一个具有1个线性单元的网络
model=keras.Sequential([layers.Dense(units=1,input_shape=[3])
])

2.深度神经网络

 构建序列模型

#构建序列模型
from tensorflow import keras
from tensorflow.keras import layers
model=keras.Sequential([#隐藏的 ReLU 层layers.Dense(unit=4,activation='relu',input_shape=[2]),layers.Dense(unit=3,activation='relu'),#线性输出层layers.Dense(units=1),
])

 

 重写代码以使用激活层

#重写代码以使用激活层
model = keras.Sequential([layers.Dense(units=32, input_shape=[8]),layers.Activation('relu'),layers.Dense(units=32),layers.Activation('relu'),layers.Dense(1),
])

 3.梯度下降

深度学习中使用的几乎所有优化算法都属于随机梯度下降算法。它们是分步训练网络的迭代算法。训练的一个步骤如下:抽取一些训练数据,并通过网络运行以进行预测。测量预测值与真实值之间的损失。最后,朝着使损失更小的方向调整权重。

一个“损失函数”,用于衡量网络预测的好坏。
一个“优化器”,可以告诉网络如何改变其权重。

#随机梯度下降
#一个“损失函数”,用于衡量网络预测的好坏。
#一个“优化器”,可以告诉网络如何改变其权重
#添加损失和优化器¶
#定义模型后,可以使用模型的编译方法添加损失函数和优化器:
model.compile(optimizer="adam",loss="mae",
)

开始训练:告诉 Keras 每次向优化器提供 256 行训练数据(batch_size),并在整个数据集中执行 10 次。 

#开始训练:告诉 Keras 每次向优化器提供 256 行训练数据(batch_size),并在整个数据集中执行10次(epoch)。
history=model.fit(X_train,y_train,validation_data=(X_vaild,y_vaild),batch_size=256,epochs=10,
)

用图表的形式查看损失 

#用图表的形式查看损失
import pandas as pd
#将训练历史转换为数据框
history_df=pd.DataFrame(history.history)
#使用 Pandas 原生的 plot 方法
history_df['loss'].plot();

 

 4.过拟合和欠拟合

 

使网络更深(添加更多层)来增加网络的容量。
更宽的网络更容易学习更多的线性关系,而更深的网络则更倾向于非线性关系。

#过拟合和欠拟合
#使网络更深(添加更多层)来增加网络的容量。
#更宽的网络更容易学习更多的线性关系,而更深的网络则更倾向于非线性关系。
model = keras.Sequential([layers.Dense(16, activation='relu'),layers.Dense(1),
])wider = keras.Sequential([layers.Dense(32, activation='relu'),layers.Dense(1),
])deeper = keras.Sequential([layers.Dense(16, activation='relu'),layers.Dense(16, activation='relu'),layers.Dense(1),
])

当模型过于热衷于学习噪声时,验证损失可能会在训练期间开始增加。
为了防止这种情况,我们可以在验证损失似乎不再减少时停止训练。
以这种方式中断训练称为提前停止。 

#模型过于热衷于学习噪声时,验证损失可能会在训练期间开始增加。
#为了防止这种情况,我们可以在验证损失似乎不再减少时停止训练。
#以这种方式中断训练称为提前停止。
from tensorflow.keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(#视为改进的最小变化量min_delta=0.001, #停止前要等待多少个 epochpatience=20, restore_best_weights=True,
)

5. Dropout和批量标准化

添加 Dropout正则化

#添加 Dropout正则化
keras.Sequential([# ...#将 30% 的 dropout 应用到下一层layers.Dropout(rate=0.3), layers.Dense(16),# ...
])

添加批量标准化 

#添加批量标准化
layers.Dense(16, activation='relu'),
layers.BatchNormalization(),#或者
layers.Dense(16),
layers.BatchNormalization(),
layers.Activation('relu'),

Droupout和批量标准化 

#Droupout和批量标准化
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([layers.Dense(1024, activation='relu', input_shape=[11]),layers.Dropout(0.3),layers.BatchNormalization(),layers.Dense(1024, activation='relu'),layers.Dropout(0.3),layers.BatchNormalization(),layers.Dense(1024, activation='relu'),layers.Dropout(0.3),layers.BatchNormalization(),layers.Dense(1),
])

6.二分类

 

#二分类
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([layers.Dense(4, activation='relu', input_shape=[33]),layers.Dense(4, activation='relu'),    layers.Dense(1, activation='sigmoid'),
])

将交叉熵损失和准确度指标添加到模型中 

#将交叉熵损失和准确度指标添加到模型中
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['binary_accuracy'],
)

这个特定问题中的模型可能需要相当多的时期才能完成训练,因此我们将包含一个早期停止回调以方便使用。 

#这个特定问题中的模型可能需要相当多的时期才能完成训练,
#因此我们将包含一个早期停止回调以方便使用。
early_stopping = keras.callbacks.EarlyStopping(patience=10,min_delta=0.001,restore_best_weights=True,
)

 

 

这篇关于Kaggle——Deep Learning(使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036967

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互