Kaggle——Deep Learning(使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络)

本文主要是介绍Kaggle——Deep Learning(使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 1.单个神经元

创建一个具有1个线性单元的网络

#线性单元
from tensorflow import keras
from tensorflow.keras import layers
#创建一个具有1个线性单元的网络
model=keras.Sequential([layers.Dense(units=1,input_shape=[3])
])

2.深度神经网络

 构建序列模型

#构建序列模型
from tensorflow import keras
from tensorflow.keras import layers
model=keras.Sequential([#隐藏的 ReLU 层layers.Dense(unit=4,activation='relu',input_shape=[2]),layers.Dense(unit=3,activation='relu'),#线性输出层layers.Dense(units=1),
])

 

 重写代码以使用激活层

#重写代码以使用激活层
model = keras.Sequential([layers.Dense(units=32, input_shape=[8]),layers.Activation('relu'),layers.Dense(units=32),layers.Activation('relu'),layers.Dense(1),
])

 3.梯度下降

深度学习中使用的几乎所有优化算法都属于随机梯度下降算法。它们是分步训练网络的迭代算法。训练的一个步骤如下:抽取一些训练数据,并通过网络运行以进行预测。测量预测值与真实值之间的损失。最后,朝着使损失更小的方向调整权重。

一个“损失函数”,用于衡量网络预测的好坏。
一个“优化器”,可以告诉网络如何改变其权重。

#随机梯度下降
#一个“损失函数”,用于衡量网络预测的好坏。
#一个“优化器”,可以告诉网络如何改变其权重
#添加损失和优化器¶
#定义模型后,可以使用模型的编译方法添加损失函数和优化器:
model.compile(optimizer="adam",loss="mae",
)

开始训练:告诉 Keras 每次向优化器提供 256 行训练数据(batch_size),并在整个数据集中执行 10 次。 

#开始训练:告诉 Keras 每次向优化器提供 256 行训练数据(batch_size),并在整个数据集中执行10次(epoch)。
history=model.fit(X_train,y_train,validation_data=(X_vaild,y_vaild),batch_size=256,epochs=10,
)

用图表的形式查看损失 

#用图表的形式查看损失
import pandas as pd
#将训练历史转换为数据框
history_df=pd.DataFrame(history.history)
#使用 Pandas 原生的 plot 方法
history_df['loss'].plot();

 

 4.过拟合和欠拟合

 

使网络更深(添加更多层)来增加网络的容量。
更宽的网络更容易学习更多的线性关系,而更深的网络则更倾向于非线性关系。

#过拟合和欠拟合
#使网络更深(添加更多层)来增加网络的容量。
#更宽的网络更容易学习更多的线性关系,而更深的网络则更倾向于非线性关系。
model = keras.Sequential([layers.Dense(16, activation='relu'),layers.Dense(1),
])wider = keras.Sequential([layers.Dense(32, activation='relu'),layers.Dense(1),
])deeper = keras.Sequential([layers.Dense(16, activation='relu'),layers.Dense(16, activation='relu'),layers.Dense(1),
])

当模型过于热衷于学习噪声时,验证损失可能会在训练期间开始增加。
为了防止这种情况,我们可以在验证损失似乎不再减少时停止训练。
以这种方式中断训练称为提前停止。 

#模型过于热衷于学习噪声时,验证损失可能会在训练期间开始增加。
#为了防止这种情况,我们可以在验证损失似乎不再减少时停止训练。
#以这种方式中断训练称为提前停止。
from tensorflow.keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(#视为改进的最小变化量min_delta=0.001, #停止前要等待多少个 epochpatience=20, restore_best_weights=True,
)

5. Dropout和批量标准化

添加 Dropout正则化

#添加 Dropout正则化
keras.Sequential([# ...#将 30% 的 dropout 应用到下一层layers.Dropout(rate=0.3), layers.Dense(16),# ...
])

添加批量标准化 

#添加批量标准化
layers.Dense(16, activation='relu'),
layers.BatchNormalization(),#或者
layers.Dense(16),
layers.BatchNormalization(),
layers.Activation('relu'),

Droupout和批量标准化 

#Droupout和批量标准化
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([layers.Dense(1024, activation='relu', input_shape=[11]),layers.Dropout(0.3),layers.BatchNormalization(),layers.Dense(1024, activation='relu'),layers.Dropout(0.3),layers.BatchNormalization(),layers.Dense(1024, activation='relu'),layers.Dropout(0.3),layers.BatchNormalization(),layers.Dense(1),
])

6.二分类

 

#二分类
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential([layers.Dense(4, activation='relu', input_shape=[33]),layers.Dense(4, activation='relu'),    layers.Dense(1, activation='sigmoid'),
])

将交叉熵损失和准确度指标添加到模型中 

#将交叉熵损失和准确度指标添加到模型中
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['binary_accuracy'],
)

这个特定问题中的模型可能需要相当多的时期才能完成训练,因此我们将包含一个早期停止回调以方便使用。 

#这个特定问题中的模型可能需要相当多的时期才能完成训练,
#因此我们将包含一个早期停止回调以方便使用。
early_stopping = keras.callbacks.EarlyStopping(patience=10,min_delta=0.001,restore_best_weights=True,
)

 

 

这篇关于Kaggle——Deep Learning(使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036967

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多