【C++】左值与右值

2024-06-06 18:48
文章标签 c++ 右值 左值

本文主要是介绍【C++】左值与右值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 左值与右值

到了代码的下一行,是否能通过单一变量访问到值。若访问不到,就是右值;否则就是左值。字面量一定是右值

#include <iostream>
using namespace std;#define func(x) __func(x, "func(" #x ")")void __func(int &x, const char *str) {cout << str << " is left value" << endl;return ;
}void __func(int &&x, const char *str) {cout << str << " is right value" << endl;return ;
}//之所以+重载不返回引用,而+=重载返回引用
//就是因为两个操作的结果值的类型不同
class A {
public ://因为+表达式的结果是右值A operator+(int x) {}// += 表达式的结果是左值A &operator+=(int x) {}
};int main() {func(1234);int x = 1234, y = 456;//到了下一行依然能通过x访问到x的值func(x);//x+y的结果是个临时匿名变量,所以到下一行的时候无法访问到该结果值,所以x+y返回值的类型是右值func(x + y);//x++值是x+1之前的值,到下一行无法通过x访问到x+1之前的值func(x++);//x+1以后的值,可以通过x访问到该值,所以++x的值是左值func(++x);//到了代码下一行无法通过单一变量访问到x+123的结果func(x + 123); //右值//到了代码下一行可以通过x访问到 x *= 2的结果func(x *= 2); //左func(y += 3); //左func(y * 3); //右return 0;
}

运行结果:
image-20210313160322553

2. 左值引用和右值引用

右值引用是绑定到右值上的引用,右值引用的定义形式是 int &&;左值引用的定义形式是int &

正确传递左值和右值的关系:

#include <iostream>
using namespace std;#define func(x) __func(x, "func(" #x ")")
#define func2(x) __func2(x, "func2(" #x ")")void __func2(int &x, const char *str) {cout << str << " is left value" << endl;return ;
}void __func2(int &&x, const char *str) {cout << str << " is right value" << endl;return ;
}void __func(int &x, const char *str) {cout << str << " is left value" << endl;func2(x);return ;
}
//int &&x是右值引用
void __func(int &&x, const char *str) {cout << str << " is right value" << endl;//func2(x); //x表现出的是左值特性//func2(move(x));//强制变成右值特性func2(forward<int &&>(x));//以右值引用的形式向下传递,x会保持右值引用的特性,可以理解为强制转换,但是比强制转换更强大,可以转换为某种类型的引用return ;
}//之所以+重载不返回引用,而+=重载返回引用
//就是因为两个操作的结果值的类型不同
class A {
public ://因为+表达式的结果是右值A operator+(int x) {}// += 表达式的结果是左值A &operator+=(int x) {}
};int main() {func(1234);int x = 1234, y = 456;//到了下一行依然能通过x访问到x的值func(x);//x+y的结果是个临时匿名变量,所以到下一行的时候无法访问到该结果值,所以x+y返回值的类型是右值func(x + y);//x++值是x+1之前的值,到下一行无法通过x访问到x+1之前的值func(x++);//x+1以后的值,可以通过x访问到该值,所以++x的值是左值func(++x);//到了代码下一行无法通过单一变量访问到x+123的结果func(x + 123); //右值//到了代码下一行可以通过x访问到 x *= 2的结果func(x *= 2); //左func(y += 3); //左func(y * 3); //右return 0;
}

运行结果:
image-20210313191612706
moveforward 函数为什么重要呢?本质原因是C++有重载,保证用正确的类型向下传递,保证可以调用到正确的函数重载形式。

forward 叫做 完美转发,比强制转换更厉害的是可以转换为某种类型的引用。

3. 引用绑定的顺序

#include <iostream>
using namespace std;void func1(int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(const int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(const int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}int main() {int n;const int y = 123;func1(n); //func1(int &);func1(y); //func1(const int &)func1(123 + 456); //func1(int &&)return 0;
}

运行结果:
image-20210313200227802
const 类型的左值引用可以绑定所有数据类型:

#include <iostream>
using namespace std;/*void func1(int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}*/void func1(const int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}/*void func1(int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(const int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}*/int main() {int n;const int y = 123;func1(n); //func1(int &);func1(y); //func1(const int &)func1(123 + 456); //func1(int &&)return 0;
}

运行结果:
在这里插入图片描述
不能绑定到func(int &)是因为在func1(int &)中是可能修改该值的,常量值是不能绑定到int &的,但是func1(const int &)是不能修改的参数的,所以绑定到func1(const int &)是为了包含所有情况。绑定顺序就是优先绑定和自己类型匹配的引用,否则绑定到const类型的左值引用。

4. 移动构造

/*************************************************************************> File Name: move_ctor.cpp> Author: Maureen > Mail: Maureen@qq.com > Created Time: 二  1/11 16:17:49 2022************************************************************************/#include <iostream>
using namespace std;
//实现自己的vector
namespace maureen {
class vector {
public :vector(int n = 10) : __size(n), data(new int[n]) {cout << "default constructor" << endl;}vector(const vector &v) : __size(v.size()), data(new int[__size]) {cout << "deep copy constructor" << endl;for (int i = 0; i < size(); i++) ++data[i] = v[i];return ;}//合并两个动态数组vector operator+(const vector &v) {vector ret(v.size() + this->size());vector &now = *this;for (int i = 0; i < size(); i++) {ret[i] = now[i];}for (int i = size(); i< ret.size(); i++) {ret[i] = v[i - size()];}return ret;}int &operator[](int ind) const {return this->data[ind];}int size() const { return __size; }
private :int __size;int *data;
};
}//end of maureenostream &operator<<(ostream &out, const maureen::vector &v) {for (int i = 0; i < v.size(); i++) {out << v[i] << " ";}return out;
}int main() {maureen::vector v1, v2;for (int i = 0; i < v1.size(); i++) v1[i] = rand() % 100;for (int i = 0; i < v2.size(); i++) v2[i] = rand() % 100;maureen::vector v3(v1 + v2);cout << v1 << endl;cout << v2 << endl;cout << v3 << endl;return 0;
}

有返回值优化的运行结果:
image-20210313192938872
没有返回值优化的运行结果:
image-20210313194434931
maureen::vector v3(v1 + v2); 中的 v1+v2 会产生一个临时变量,但是却对这个临时变量做了拷贝,这没有必要,何不直接将临时变量的值拿过来。

所以就产生了一类特殊的构造函数: 移动构造

拷贝构造传入的是左值引用,所以在拷贝构造中,必须得做深拷贝;构造函数可以传左值引用,也可以传右值引用。

一旦调用了右值引用对象,说明传入的值是临时值,要不然不会绑定到右值引用上。这种情况下,就直接抢。这就是移动构造:

vector(vector &&v) : __size(v.size()), data(v.data) {v.data = nullptr; //因为有时候可能是在显式调用移动构造v.__size = 0;
}

移动构造就是传入右值引用的构造。

#include <iostream>
using namespace std;
//实现自己的vector
namespace maureen {
class vector {
public :vector(int n = 10) : __size(n), data(new int[n]) {cout << "default constructor" << endl;}vector(const vector &v) : __size(v.size()), data(new int[__size]) { //拷贝构造cout << "deep copy constructor" << endl;for (int i = 0; i < size(); i++) ++data[i] = v[i];return ;}vector(vector &&v) : __size(v.size()), data(v.data) { //移动构造cout << "move copy constructor" << endl;v.data = nullptr;v.__size = 0;}vector operator+(const vector &v) { //合并两个动态数组vector ret(v.size() + this->size());vector &now = *this;for (int i = 0; i < size(); i++) {ret[i] = now[i];}for (int i = size(); i< ret.size(); i++) {ret[i] = v[i - size()];}return ret;}int &operator[](int ind) const {return this->data[ind];}int size() const { return __size; }~vector() {if (data) delete[] data;data = nullptr;__size = 0;}
private :int __size;int *data;
};
}//end of maureenostream &operator<<(ostream &out, const maureen::vector &v) {for (int i = 0; i < v.size(); i++) {out << v[i] << " ";}return out;
}int main() {maureen::vector v1, v2;for (int i = 0; i < v1.size(); i++) v1[i] = rand() % 100;for (int i = 0; i < v2.size(); i++) v2[i] = rand() % 100;maureen::vector v3(v1 + v2);cout << v1 << endl;cout << v2 << endl;cout << v3 << endl;return 0;
}

去掉返回值优化后的结果:
image-20210313194740273
移动构造只是改变了指针的指向,而拷贝构造需要先创建一片存储区再将数据拷贝过来。

发现当前值是临时值的时候,就将它的资源抢过来。

C++因为引入左值引用和右值引用,重回巅峰。因为在有移动构造之前,STL效率不高,因为只要产生拷贝就是深拷贝,如 string,vector。

当拷贝构造是深拷贝时,就一定要配一个移动构造。

显式调用移动构造函数:

#include <iostream>
using namespace std;
//实现自己的vector
namespace maureen {
class vector {
public :vector(int n = 10) : __size(n), data(new int[n]) {cout << "default constructor" << endl;}vector(const vector &v) : __size(v.size()), data(new int[__size]) {cout << "deep copy constructor" << endl;for (int i = 0; i < size(); i++) ++data[i] = v[i];return ;}vector(vector &&v) : __size(v.size()), data(v.data) {cout << "move copy constructor" << endl;v.data = nullptr;v.__size = 0;}vector operator+(const vector &v) { //合并两个动态数组vector ret(v.size() + this->size());vector &now = *this;for (int i = 0; i < size(); i++) {ret[i] = now[i];}for (int i = size(); i< ret.size(); i++) {ret[i] = v[i - size()];}return ret;}int &operator[](int ind) const {return this->data[ind];}int size() const { return __size; }~vector() {if (data) delete[] data;data = nullptr;__size = 0;}
private :int __size;int *data;
};
}//end of maureenostream &operator<<(ostream &out, const maureen::vector &v) {for (int i = 0; i < v.size(); i++) {out << v[i] << " ";}return out;
}
int main() {maureen::vector v1, v2;for (int i = 0; i < v1.size(); i++) v1[i] = rand() % 100;for (int i = 0; i < v2.size(); i++) v2[i] = rand() % 100;maureen::vector v3(v1 + v2);cout << v1 << endl;cout << v2 << endl;cout << v3 << endl;maureen::vector v4(move(v1));//显式调用移动构造cout << v1 << endl;cout << v4 << endl;return 0;
}

去掉返回值优化的运行结果:
image-20210313194908978

这篇关于【C++】左值与右值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036934

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元