Mysql Join语法解析与性能分析--通过集合来看join

2024-06-06 17:38

本文主要是介绍Mysql Join语法解析与性能分析--通过集合来看join,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.Join语法概述

join 用于多表中字段之间的联系,语法如下:

... FROM table1 INNER|LEFT|RIGHT JOIN table2 ON conditiona

table1:左表;table2:右表。

JOIN 按照功能大致分为如下三类:

INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录。

LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(table2)并无对应匹配记录。

RIGHT JOIN(右连接):与 LEFT JOIN 相反,取得右表(table2)完全记录,即是左表(table1)并无匹配对应记录。

注意:mysql不支持Full join,不过可以通过UNION 关键字来合并 LEFT JOIN 与 RIGHT JOIN来模拟FULL join.

接下来给出一个列子用于解释下面几种分类。如下两个表(A,B)

mysql> select A.id,A.name,B.name from A,B where A.id=B.id;
+----+-----------+-------------+
| id | name       | name             |
+----+-----------+-------------+
|  1 | Pirate       | Rutabaga      |
|  2 | Monkey    | Pirate            |
|  3 | Ninja         | Darth Vader |
|  4 | Spaghetti  | Ninja             |
+----+-----------+-------------+
4 rows in set (0.00 sec)

二.Inner join

内连接,也叫等值连接,inner join产生同时符合A和B的一组数据。

mysql> select * from A inner join B on A.name = B.name;
+----+--------+----+--------+
| id | name   | id | name   |
+----+--------+----+--------+
|  1 | Pirate |  2 | Pirate |
|  3 | Ninja  |  4 | Ninja  |
+----+--------+----+--------+

三.Left join

mysql> select * from A left join B on A.name = B.name;
#或者:select * from A left outer join B on A.name = B.name;+----+-----------+------+--------+
| id | name      | id   | name   |
+----+-----------+------+--------+
|  1 | Pirate    |    2 | Pirate |
|  2 | Monkey    | NULL | NULL   |
|  3 | Ninja     |    4 | Ninja  |
|  4 | Spaghetti | NULL | NULL   |
+----+-----------+------+--------+
4 rows in set (0.00 sec)

left join,(或left outer join:在Mysql中两者等价,推荐使用left join.)左连接从左表(A)产生一套完整的记录,与匹配的记录(右表(B)) .如果没有匹配,右侧将包含null。

如果想只从左表(A)中产生一套记录,但不包含右表(B)的记录,可以通过设置where语句来执行,如下:

mysql> select * from A left join B on A.name=B.name where A.id is null or B.id is null;
+----+-----------+------+------+
| id | name      | id   | name |
+----+-----------+------+------+
|  2 | Monkey    | NULL | NULL |
|  4 | Spaghetti | NULL | NULL |
+----+-----------+------+------+
2 rows in set (0.00 sec)

同理,还可以模拟inner join. 如下:

mysql> select * from A left join B on A.name=B.name where A.id is not null and B.id is not null;
+----+--------+------+--------+
| id | name   | id   | name   |
+----+--------+------+--------+
|  1 | Pirate |    2 | Pirate |
|  3 | Ninja  |    4 | Ninja  |
+----+--------+------+--------+
2 rows in set (0.00 sec)

求差集:

根据上面的例子可以求差集,如下:

SELECT * FROM A LEFT JOIN B ON A.name = B.name
WHERE B.id IS NULL
union
SELECT * FROM A right JOIN B ON A.name = B.name
WHERE A.id IS NULL;
# 结果+------+-----------+------+-------------+
| id   | name      | id   | name        |
+------+-----------+------+-------------+
|    2 | Monkey    | NULL | NULL        |
|    4 | Spaghetti | NULL | NULL        |
| NULL | NULL      |    1 | Rutabaga    |
| NULL | NULL      |    3 | Darth Vader |
+------+-----------+------+-------------+

四.Right join

mysql> select * from A right join B on A.name = B.name;
+------+--------+----+-------------+
| id   | name   | id | name        |
+------+--------+----+-------------+
| NULL | NULL   |  1 | Rutabaga    |
|    1 | Pirate |  2 | Pirate      |
| NULL | NULL   |  3 | Darth Vader |
|    3 | Ninja  |  4 | Ninja       |
+------+--------+----+-------------+
4 rows in set (0.00 sec)

同left join。

五.Cross join

cross join:交叉连接,得到的结果是两个表的乘积,即笛卡尔积

笛卡尔(Descartes)乘积又叫直积。假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。可以扩展到多个集合的情况。类似的例子有,如果A表示某学校学生的集合,B表示该学校所有课程的集合,则A与B的笛卡尔积表示所有可能的选课情况。

mysql> select * from A cross join B;
+----+-----------+----+-------------+
| id | name      | id | name        |
+----+-----------+----+-------------+
|  1 | Pirate    |  1 | Rutabaga    |
|  2 | Monkey    |  1 | Rutabaga    |
|  3 | Ninja     |  1 | Rutabaga    |
|  4 | Spaghetti |  1 | Rutabaga    |
|  1 | Pirate    |  2 | Pirate      |
|  2 | Monkey    |  2 | Pirate      |
|  3 | Ninja     |  2 | Pirate      |
|  4 | Spaghetti |  2 | Pirate      |
|  1 | Pirate    |  3 | Darth Vader |
|  2 | Monkey    |  3 | Darth Vader |
|  3 | Ninja     |  3 | Darth Vader |
|  4 | Spaghetti |  3 | Darth Vader |
|  1 | Pirate    |  4 | Ninja       |
|  2 | Monkey    |  4 | Ninja       |
|  3 | Ninja     |  4 | Ninja       |
|  4 | Spaghetti |  4 | Ninja       |
+----+-----------+----+-------------+
16 rows in set (0.00 sec)#再执行:mysql> select * from A inner join B; 试一试#在执行mysql> select * from A cross join B on A.name = B.name; 试一试

实际上,在 MySQL 中(仅限于 MySQL) CROSS JOIN 与 INNER JOIN 的表现是一样的,在不指定 ON 条件得到的结果都是笛卡尔积,反之取得两个表完全匹配的结果。
INNER JOIN 与 CROSS JOIN 可以省略 INNER 或 CROSS 关键字,因此下面的 SQL 效果是一样的:

... FROM table1 INNER JOIN table2
... FROM table1 CROSS JOIN table2
... FROM table1 JOIN table2

六.Full join

mysql> select * from A left join B on B.name = A.name -> union -> select * from A right join B on B.name = A.name;
+------+-----------+------+-------------+
| id   | name      | id   | name        |
+------+-----------+------+-------------+
|    1 | Pirate    |    2 | Pirate      |
|    2 | Monkey    | NULL | NULL        |
|    3 | Ninja     |    4 | Ninja       |
|    4 | Spaghetti | NULL | NULL        |
| NULL | NULL      |    1 | Rutabaga    |
| NULL | NULL      |    3 | Darth Vader |
+------+-----------+------+-------------+
6 rows in set (0.00 sec)

全连接产生的所有记录(双方匹配记录)在表A和表B。如果没有匹配,则对面将包含null。

七.性能优化

1.显示(explicit) inner join VS 隐式(implicit) inner join

如:

select * from
table a inner join table b
on a.id = b.id;

VS

select a.*, b.*
from table a, table b
where a.id = b.id;

我在数据库中比较(10w数据)得之,它们用时几乎相同,第一个是显示的inner join,后一个是隐式的inner join。

参照:Explicit vs implicit SQL joins

2.left join/right join VS inner join

尽量用inner join.避免 LEFT JOIN 和 NULL.

在使用left join(或right join)时,应该清楚的知道以下几点:

(1). on与 where的执行顺序

ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据,在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。

所以我们要注意:在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行。如:

PS, 这部分有些不妥,感谢 wxweven 指正

这部分的内容,博主写的有些欠妥当,不知道博主有没有实际运行测试过,下面说说我的看法:

(1)首先关于on和where的用法,如果直接把where里面的条件拿到on里面去,结果是跟原来的不一致的,所以博主说的“在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行”是不成立的,因为筛选条件放在on或者where,产生的是不同的结果,不能说为了性能就把where中的条件放到on中。

可参考sql语句中join on和where用法的区别和联系

PASS

select * from A
inner join B on B.name = A.name
left join C on C.name = B.name
left join D on D.id = C.id
where C.status>1 and D.status=1;

Great

select * from A
inner join B on B.name = A.name
left join C on C.name = B.name and C.status>1
left join D on D.id = C.id and D.status=1

从上面例子可以看出,尽可能满足ON的条件,而少用Where的条件。从执行性能来看第二个显然更加省时。

(2).注意ON 子句和 WHERE 子句的不同

如作者举了一个列子:

mysql> SELECT * FROM product LEFT JOIN product_detailsON (product.id = product_details.id)AND product_details.id=2;
+----+--------+------+--------+-------+
| id | amount | id   | weight | exist |
+----+--------+------+--------+-------+
|  1 |    100 | NULL |   NULL |  NULL |
|  2 |    200 |    2 |     22 |     0 |
|  3 |    300 | NULL |   NULL |  NULL |
|  4 |    400 | NULL |   NULL |  NULL |
+----+--------+------+--------+-------+
4 rows in set (0.00 sec)mysql> SELECT * FROM product LEFT JOIN product_detailsON (product.id = product_details.id)WHERE product_details.id=2;
+----+--------+----+--------+-------+
| id | amount | id | weight | exist |
+----+--------+----+--------+-------+
|  2 |    200 |  2 |     22 |     0 |
+----+--------+----+--------+-------+
1 row in set (0.01 sec)

从上可知,第一条查询使用 ON 条件决定了从 LEFT JOIN的 product_details表中检索符合的所有数据行。第二条查询做了简单的LEFT JOIN,然后使用 WHERE 子句从 LEFT JOIN的数据中过滤掉不符合条件的数据行。

(3).尽量避免子查询,而用join

往往性能这玩意儿,更多时候体现在数据量比较大的时候,此时,我们应该避免复杂的子查询。如下:

PASS

insert into t1(a1) select b1 from t2 where not exists(select 1 from t1 where t1.id = t2.r_id); 

Great

insert into t1(a1)  
select b1 from t2  
left join (select distinct t1.id from t1 ) t1 on t1.id = t2.r_id   
where t1.id is null;  

这个可以参考mysql的exists与inner join 和 not exists与 left join 性能差别惊人

这篇关于Mysql Join语法解析与性能分析--通过集合来看join的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036779

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4