云原生时代:从 Jenkins 到 Argo Workflows,构建高效 CI Pipeline

2024-06-06 08:04

本文主要是介绍云原生时代:从 Jenkins 到 Argo Workflows,构建高效 CI Pipeline,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:蔡靖

Argo Workflows

Argo Workflows [ 1] 是用于在 Kubernetes 上编排 Job 的开源的云原生工作流引擎。可以轻松自动化和管理 Kubernetes 上的复杂工作流程。适用于各种场景,包括定时任务、机器学习、ETL 和数据分析、模型训练、数据流 pipline、CI/CD 等。

Kubernetes Jobs 只提供基础的任务执行,但是无法定义步骤依赖关系和顺序、缺乏工作流模版、没有可视化界面,也不支持工作流级别的错误处理等,对于批处理、数据处理、科学计算、持续集成等业务场景,Kubernetes Job 无法胜任。

Argo Workflows 作为 CNCF 的毕业项目,已被使用在多种场景,持续集成(CI)是其一个重要应用领域。

图片

CI 与 Jenkins

持续集成和持续部署(CI/CD)是软件开发生命周期中的重要部分,它允许团队以敏捷流程开发应用并提高所构建应用程序的质量。持续集成(CI)是面向开发者的自动化流程,经测试、构建等步骤,有助于更频繁、可靠地将代码变更提交到主分支。

Jenkins 作为 CI/CD 领域最常见的解决方案,其具有开源免费、插件丰富、社区成熟诸多优点,但它仍然存在一些问题,尤其是云原生大背景的当下:

  • 非 kubernetes 原生;
  • 随着 pipeline 和插件的增加,Jenkins 会面临性能瓶颈;
  • 自动扩展能力不足,并发不足,运行时间长,空闲计算浪费成本;
  • 维护成本方面,虽然 Jenkins 的插件生态系统丰富,但这也可能导致插件版本不兼容、更新不及时或安全漏洞等问题,管理插件更新和权限是一个持续的挑战;
  • 项目隔离/权限分配方案的缺陷等。

Argo Workflows 与 Jenkins 的对比

相比于 Jenkins,Argo Workflows 有诸多优势。Argo Workflows 构建在 Kubernetes 之上,使其具有 Kubernetes 经过时间考验的优势,其 Autoscaling 和并发等能力,使得 Argo Workflows 可以处理大规模的 pipelins,具有更快的运行速度,和更低的费用/使用成本,让开发者更加聚焦业务功能和为客户提供、传播价值;并且与 Argo 生态的 Argo CD、Argo Rollout、Argo Event 的无缝集成,为 CI 等场景提供更强大的能力。您可以基于 Argo Workflows 来构建更加云原生、大规模、高效率、低成本的 CI Pipeline。

对比如下:

image.png

基于 ACK One Serverless Argo 工作流的 CI Pipeline

ACK One Serverless Argo 工作流

ACK One Serverless Argo 工作流 [ 2] 作为一款完全遵循社区规范的全托管式 Argo Workflows 服务,致力于应对大规模计算密集型作业,通过集成阿里云 ECI 实现自动扩展和极致弹性、按需扩容以最小化成本,通过使用 spot ECI(抢占式 ECI 实例 [ 3] )可以降低 80% 成本。

图片

CI Pipeline 概述

基于 ACK One Serverless Argo 工作流集群构建 CI Pipeline,主要使用 BuildKit [ 4] 实现容器镜像的构建和推送,并使用 BuildKit Cache [ 5] 加速镜像的构建,使用 NAS 来存储 Go mod cache 加速 go test 和 go build,最终大幅加速 CI Pipeline 流程。

我们将实现的 CI Pipeline 的 ClusterWorkflowTemplate 预置在工作流集群中(名为 ci-go-v1),其中主要包含 3 个步骤:

  1. Git Clone & Checkout:Clone Git 仓库,Checkout 到目标分支;并获取 commit id。

  2. Run Go Test:通过参数控制是否运行,使用 NAS 存储 Go mod cache 进行加速

  3. Build & Push Image:

    a. 使用 BuildKit 构建和推送容器镜像,并使用 BuildKit Cache 中 registry 类型 cache 来加速镜像构建;

    b. 镜像 tag 默认使用 {container_tag}-{commit_id} 格式,可在提交工作流时通过参数控制是否追加 commit id;

    c. 推送镜像的同时,也会推送覆盖其 latest 镜像。

您可执行以下步骤完成 CI Pipeline 的运行,详细步骤请参见最佳实践 [ 6]

  1. 在工作流集群中准备好 ACR EE 的凭据和 NAS 存储卷
  2. 基于预置模板启动工作流(workflow)运行 CI Pipeline

图片

预置 CI Pipeline 模板

工作流集群中默认已经预置了名为 ci-go-v1 的工作流模板(ClusterWorkflowTemplate),yaml 如下所示,详细参数说明请参见最佳实践 [ 6]

apiVersion: argoproj.io/v1alpha1
kind: ClusterWorkflowTemplate
metadata:name: ci-go-v1
spec:entrypoint: mainvolumes:- name: run-testemptyDir: {}- name: workdirpersistentVolumeClaim:claimName: pvc-nas- name: docker-configsecret:secretName: docker-configarguments:parameters:- name: repo_urlvalue: ""- name: repo_namevalue: ""- name: target_branchvalue: "main"- name: container_imagevalue: ""- name: container_tagvalue: "v1.0.0"- name: dockerfilevalue: "./Dockerfile"- name: enable_suffix_commitidvalue: "true"- name: enable_testvalue: "true"templates:- name: maindag:tasks:- name: git-checkout-prinline:container:image: alpine:latestcommand:- sh- -c- |set -euapk --update add gitcd /workdirecho "Start to Clone "{{workflow.parameters.repo_url}}git -C "{{workflow.parameters.repo_name}}" pull || git clone {{workflow.parameters.repo_url}} cd {{workflow.parameters.repo_name}}echo "Start to Checkout target branch" {{workflow.parameters.target_branch}}git checkout {{workflow.parameters.target_branch}}echo "Get commit id" git rev-parse --short origin/{{workflow.parameters.target_branch}} > /workdir/{{workflow.parameters.repo_name}}-commitid.txtcommitId=$(cat /workdir/{{workflow.parameters.repo_name}}-commitid.txt)echo "Commit id is got: "$commitIdecho "Git Clone and Checkout Complete."volumeMounts:- name: "workdir"mountPath: /workdirresources:requests:memory: 1Gicpu: 1activeDeadlineSeconds: 1200- name: run-testwhen: "{{workflow.parameters.enable_test}} == true"inline: container:image: golang:1.22-alpinecommand:- sh- -c- |set -euif [ ! -d "/workdir/pkg/mod" ]; thenmkdir -p /workdir/pkg/modecho "GOMODCACHE Directory /pkg/mod is created"fiexport GOMODCACHE=/workdir/pkg/modcp -R /workdir/{{workflow.parameters.repo_name}} /test/{{workflow.parameters.repo_name}} echo "Start Go Test..."cd /test/{{workflow.parameters.repo_name}}go test -v ./...echo "Go Test Complete."volumeMounts:- name: "workdir"mountPath: /workdir- name: run-testmountPath: /testresources:requests:memory: 4Gicpu: 2activeDeadlineSeconds: 1200depends: git-checkout-pr    - name: build-push-imageinline: container:image: moby/buildkit:v0.13.0-rootlesscommand:- sh- -c- |         set -eutag={{workflow.parameters.container_tag}}if [ {{workflow.parameters.enable_suffix_commitid}} == "true" ]thencommitId=$(cat /workdir/{{workflow.parameters.repo_name}}-commitid.txt)tag={{workflow.parameters.container_tag}}-$commitIdfiecho "Image Tag is: "$tagecho "Start to Build And Push Container Image"cd /workdir/{{workflow.parameters.repo_name}}buildctl-daemonless.sh build \--frontend \dockerfile.v0 \--local \context=. \--local \dockerfile=. \--opt filename={{workflow.parameters.dockerfile}} \build-arg:GOPROXY=http://goproxy.cn,direct \--output \type=image,\"name={{workflow.parameters.container_image}}:${tag},{{workflow.parameters.container_image}}:latest\",push=true,registry.insecure=true \--export-cache mode=max,type=registry,ref={{workflow.parameters.container_image}}:buildcache \--import-cache type=registry,ref={{workflow.parameters.container_image}}:buildcacheecho "Build And Push Container Image {{workflow.parameters.container_image}}:${tag} and {{workflow.parameters.container_image}}:latest Complete."env:- name: BUILDKITD_FLAGSvalue: --oci-worker-no-process-sandbox- name: DOCKER_CONFIGvalue: /.dockervolumeMounts:- name: workdirmountPath: /workdir- name: docker-configmountPath: /.dockersecurityContext:seccompProfile:type: UnconfinedrunAsUser: 1000runAsGroup: 1000resources:requests:memory: 4Gicpu: 2activeDeadlineSeconds: 1200depends: run-test

在控制台运行 CI Pipeline

  1. 登录 ACK One 工作流集群控制台 [ 7]
  2. 基础信息,开启工作流控制台(Argo) ,并访问进入页面
  3. 左侧菜单栏 Cluster Workflow Templates,单击 ci-go-v1 预置模板进入详情页
  4. 单击+ SUBMIT,在右侧填入您的参数,单击下方+ SUBMIT

图片

参数说明:

image.png

执行完以后,可在 Argo UI 的 workflow 详情页查看运行情况,如下所示:

图片

总结

ACK One Serverless Argo 工作流作为全托管的 Argo 工作流服务,可以帮助您实现更大规模、具有更快的运行速度、及更低成本的 CI Pipeline,与 ACK One GitOps [ 8] (Argo CD)、Argo Event 等事件驱动架构可以构建完整的自动化 CI/CD Pipeline。

欢迎加入 ACK One 客户交流钉钉与我们一同交流。(钉钉群号:35688562

相关链接:

[1] Argo Workflows

https://argoproj.github.io/argo-workflows/

[2] ACK One Serverless Argo 工作流**

https://help.aliyun.com/zh/ack/distributed-cloud-container-platform-for-kubernetes/user-guide/overview-12

[3] 抢占式 ECI 实例

https://help.aliyun.com/zh/eci/use-cases/run-jobs-on-a-preemptible-instance?spm=a2c4g.11186623.0.i7

[4] BuildKit

https://github.com/moby/buildkit

[5] BuildKit Cache

https://github.com/moby/buildkit?tab=readme-ov-file#cache

[6] 最佳实践

https://help.aliyun.com/zh/ack/distributed-cloud-container-platform-for-kubernetes/use-cases/building-a-ci-pipeline-of-golang-project-based-on-workflow-cluster

[7] ACK One 工作流集群控制台

https://account.aliyun.com/login/login.htm?oauth_callback=https%3A%2F%2Fcs.console.aliyun.com%2Fone%3Fspm%3Da2c4g.11186623.0.0.555018e1SiD2lC#/argowf/cluster/detail

[8] ACK One GitOps

https://help.aliyun.com/zh/ack/distributed-cloud-container-platform-for-kubernetes/user-guide/gitops-overview

这篇关于云原生时代:从 Jenkins 到 Argo Workflows,构建高效 CI Pipeline的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035536

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手