代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II

2024-06-06 05:12

本文主要是介绍代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

递增子序列

491. 非递减子序列 - 力扣(LeetCode)

        非递减子序列,则答案的子集中,需保持下一个元素大于等于前一个元素的顺序,由于题目中指出,所有的子序列长度需大于等于2,考虑当条件为path.size()>1时,进行收获结果,且需要注意,这时不应该直接return,因为后续仍有可能存在子序列长度大于2的结果,仍需要继续遍历。此时结束的标志是单层遍历的结束。

        如果只按照上述向下运行,没有完成子序列的去重操作,为了完成子序列的去重以及保证下一个元素大于当前元素才加入数组,考虑加入一个set,在对当前层进行遍历时,若该元素没有使用过,将其加入set,若该元素大于path的末尾元素,将其加入path。之后继续回溯,回溯完成后复原path。具体思路参考代码随想录。

代码随想录 (programmercarl.com)icon-default.png?t=N7T8https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE

class Solution {
public:vector<int> path; // 存储当前递增子序列vector<vector<int>> paths; // 存储所有不同的递增子序列void backtracking(vector<int>& nums, int start) {if (path.size() >= 2) {paths.push_back(path); // 将满足条件的子序列添加到结果中}unordered_set<int> uset; // 用于去重for (int i = start; i < nums.size(); ++i) {if ((!path.empty() && nums[i] < path.back()) || uset.find(nums[i]) != uset.end()) {continue; // 跳过不满足条件的元素}uset.insert(nums[i]);path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个元素path.pop_back(); // 回溯,移除当前元素}}vector<vector<int>> findSubsequences(vector<int>& nums) {backtracking(nums, 0); // 从第一个元素开始搜索return paths;}
};

回溯法寻找递增子序列的过程,在最差情况下需要遍历所有可能的子序列,每个元素都有可能存在或者不存在与子序列中,所以算法的时间复杂度为O(2^n),就空间复杂度来说,使用了哈希集合来检查是否已经包含了某个元素,使用了一个辅助的path来存储当前的子序列,在递归的过程中,path和uset都会不断改变,但最大的情况为递归的最深处,此时应有n层,因此空间复杂度为O(n)。

全排列

46. 全排列 - 力扣(LeetCode)

思路:从数组的第一个元素开始,逐步构建排列,对于每个位置,将不同的数字放在该位置上,然后递归地处理下一个位置。若当前位置已经包含了某元素,则我们要跳过它,选择其他数字,条件为

 if (find(path.begin(), path.end(), nums[i]) == path.end()) 

治理find函数返回的迭代器等于path.end(),说明nums[i]不在path中,即当前数字还没有被使用过。

当排列的长度等于数组的长度时,收获为一个有效的排列。

if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}

整体代码如下。

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}for (int i = 0; i < nums.size(); ++i) {if (find(path.begin(), path.end(), nums[i]) == path.end()) {// 如果当前数字不在排列中,将其添加到排列中path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字}}}vector<vector<int>> permute(vector<int>& nums) {backtracking(nums, 0); // 从第一个位置开始搜索return result;}
};

排列的时间复杂度为O(n!),每个位置,都可以选择不同的数字。

空间复杂度为O(n)。

全排列II

47. 全排列 II - 力扣(LeetCode)

错误代码,使用了start

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存该排列return;}for (int i = 0; i < nums.size(); ++i) {if(start > 0 and nums[i]== nums[i - 1]){continue;}path.push_back(nums[i]);backtracking(nums, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字}}vector<vector<int>> permuteUnique(vector<int>& nums) {sort(nums.begin(), nums.end()); // 首先排序,以便去除重复排列backtracking(nums, 0);return result;}
};

正确代码

class Solution {
public:vector<int> path; // 保存当前排列vector<vector<int>> result; // 保存所有不同的排列void backtracking(vector<int>& nums, vector<bool>& used, int start) {if (path.size() == nums.size()) {result.push_back(path); // 当排列长度等于数组长度时,保存它return;}for (int i = 0; i < nums.size(); ++i) {if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {continue; // 跳过重复的元素}if (!used[i]) {path.push_back(nums[i]);used[i] = true;backtracking(nums, used, i + 1); // 递归搜索下一个位置path.pop_back(); // 回溯,移除当前数字used[i] = false;}}}vector<vector<int>> permuteUnique(vector<int>& nums) {sort(nums.begin(), nums.end()); // 首先排序,以便去除重复排列vector<bool> used(nums.size(), false); // 初始化 used 数组backtracking(nums, used, 0);return result;}
};

start可有可无

算法的时间复杂度为O(n!),空间复杂度为O(n),同上。

这篇关于代码随想录算法训练营day29|491.递增子序列、46.全排列、47.全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035179

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave