【因果推断python】16_工具变量2

2024-06-06 04:36

本文主要是介绍【因果推断python】16_工具变量2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

出生季度和教育对工资的影响

第一阶段


出生季度和教育对工资的影响

到目前为止,我们一直将这些工具视为一些神奇的变量 Z,它们具有仅通过干预变量影响结果的神奇特性。老实说,好的工具变量来之不易,我们不妨将它们视为奇迹。让我们说它不适合胆小的人。有传言说,芝加哥经济学院的酷孩子们谈论他们是如何在酒吧里想出这种或那种工具变量的。

不过,我们确实有一些有趣的工具示例,可以让事情变得更具体一些。我们将再次尝试估计教育对工资的影响。为此,我们将使用该人的出生季度作为工具 Z

这个想法利用了美国强制出勤法。通常,他们声明孩子必须在他们入学当年的 1 月 1 日之前满 6 岁。因此,年初出生的孩子入学年龄较大。强制出勤法还要求学生在学校上学直到他们年满 16 岁,届时他们在法律上被允许退学。结果是,与年初出生的人相比,年末出生的人平均受教育年限更长。如果我们接受出生季度与能力因素无关,即它不会混淆教育对工资的影响,我们可以将其用作工具。换句话说,我们需要相信出生季度对工资没有影响,除了对教育的影响。如果你不相信占星术,这是一个非常有说服力的论点。

g = gr.Digraph()g.edge("能力", "教育")
g.edge("能力", "工资")
g.edge("教育", "工资")
g.edge("出生季度", "教育")
g

为了进行这种分析,我们可以使用来自三次十年一次的人口普查的数据,这些数据与Angrist和Krueger 在他们关于IV的文章中使用的数据相同。该数据集包含有关我们的结果变量,即工资取对数的结果,以及我们的干预变量,即受教育年限的信息。它还包含我们的工具变量,即出生季度,以及其他控制变量的数据,例如出生年份和出生状态。

data = pd.read_csv("./data/ak91.csv")
data.head()

第一阶段

在我们使用出生季度作为工具变量之前,我们需要确保它是有效的。这意味着我们支持工具变量的两个假设:

  1. Cov(Z\text{,}T)\neq0。这是说我们应该有一个强大的第一阶段,或者工具变量确实会影响干预变量。
  2. Y\perp Z|T.这是排除限制,声明工具变量Z仅通过干预T影响结果Y。

幸运的是,第一个假设是可以验证的。我们从数据中可以看出Cov(Z,T)不为零。在我们的例子中,如果出生的季度确实是一个工具变量,就像我们所说的那样,我们应该期望在一年中最后一个季度出生的人比年初出生的人有更多的受教育时间。在运行任何统计测试来验证这一点之前,让我们绘制我们的数据并亲眼看到它。

group_data = (data.groupby(["year_of_birth", "quarter_of_birth"])[["log_wage", "years_of_schooling"]].mean().reset_index().assign(time_of_birth = lambda d: d["year_of_birth"] + (d["quarter_of_birth"])/4))plt.figure(figsize=(15,6))
plt.plot(group_data["time_of_birth"], group_data["years_of_schooling"], zorder=-1)
for q in range(1, 5):x = group_data.query(f"quarter_of_birth=={q}")["time_of_birth"]y = group_data.query(f"quarter_of_birth=={q}")["years_of_schooling"]plt.scatter(x, y, marker="s", s=200, c=f"C{q}")plt.scatter(x, y, marker=f"${q}$", s=100, c=f"white")plt.title("Years of Education by Quarter of Birth (first stage)")
plt.xlabel("Year of Birth")
plt.ylabel("Years of Schooling");

值得注意的是,在一年中的四分之一之后,学校教育的年份有一个季节性的模式。从图形上我们可以看到,一年中第一季度出生的人的受教育程度几乎总是低于最后一个季度出生的人(毕竟,一旦我们控制了出生年份,那些晚年出生的人通常受教育程度更高)。

为了更严格一点,我们可以将第一阶段作为线性回归运行。我们首先将出生季度转换为虚拟变量:

factor_data = data.assign(**{f"q{int(q)}": (data["quarter_of_birth"] == q).astype(int)for q in data["quarter_of_birth"].unique()})factor_data.head()

为简单起见,现在只使用最后一个季度,即Q4,作为工具。我们将使用干预变量:受教育年限,对工具变量:出生季度,进行回归。这将向我们展示出生在哪个季度是否确实像我们在上图中看到的那样对教育时间产生了积极影响。我们还需要在这里控制出生年份,我们将添加出生状态作为额外的控制。

first_stage = smf.ols("years_of_schooling ~ C(year_of_birth) + C(state_of_birth) + q4", data=factor_data).fit()print("q4 parameter estimate:, ", first_stage.params["q4"])
print("q4 p-value:, ", first_stage.pvalues["q4"])q4 parameter estimate:,  0.10085809272785906
q4 p-value:,  5.464829416638474e-15

看起来,在一年中最后一个季度出生的人平均比在一年中其他季度出生的人多受教育0.1年。p 值接近于零。这结束了关于出生在哪个季度是否导致更多或更少受教育年限的案例。

这篇关于【因果推断python】16_工具变量2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035105

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: