DBSCAN 算法【python,机器学习,算法】

2024-06-06 03:52

本文主要是介绍DBSCAN 算法【python,机器学习,算法】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DBSCAN 即 Density of Based Spatial Clustering of Applications with Noise,带噪声的基于空间密度聚类算法。

算法步骤:

  1. 初始化:
    • 首先,为每个数据点分配一个初始聚类标签,这里设为0,表示该点尚未被分配到一个聚类中。
    • 设置一个聚类ID(cluster_id),初始化为0,用于标识不同的聚类。
  2. 遍历数据点:
    遍历数据集中的每个点。如果某点已经被标记(即不属于聚类0),则跳过该点。
  3. 查找邻居点:
    对于每个尚未被标记的点,使用get_neighbors函数查找其ε-邻域内的所有邻居点。这通常是通过计算该点与数据集中其他点之间的欧氏距离,并比较距离与ε来实现的。
  4. 处理邻居点数量:
    • 如果找到的邻居点数量小于min_pts(最小邻居数量),则将当前点标记为噪声点(标签设为-1)。
    • 如果邻居点数量大于或等于min_pts,则将该点标记为一个新的聚类(将cluster_id加1,并将该点标签设为新的cluster_id)。
  5. 扩展聚类:
    • 对于每个新发现的聚类中的点(即刚被标记为当前cluster_id的点),执行expand_cluster函数以进一步扩展聚类。
    • 在expand_cluster函数中,遍历当前点的所有邻居点,并根据其标签进行处理:
      • 如果邻居点是噪声点(标签为-1),则将其标记为当前聚类(将标签改为cluster_id)。
      • 如果邻居点尚未被标记(标签为0),则将其标记为当前聚类,并递归地查找并标记其邻居点(如果其邻居点数量也满足min_pts)。
  6. 返回结果:
    当所有点都被处理完毕后,算法返回每个数据点的最终聚类标签。

下面是代码实现:

from collections import Counterimport numpy as np
from sklearn.datasets import make_blobsdef dbscan(data, eps, min_pts):# 初始化每个数据点的聚类标签为 0labels = [0] * len(data)# 聚类 idcluster_id = 0for i in range(len(data)):if labels[i] != 0:# 如果数据点已经被标记过,则跳过该点,继续下一个点continue# 获取当前点的邻居点neighbors = get_neighbors(data, i, eps)# 如果邻居点的数量小于最小邻居数量,则将当前点标记为噪声点if len(neighbors) < min_pts:labels[i] = -1else:# 否则,增加聚类 idcluster_id += 1# 将当前点标记为当前聚类 idlabels[i] = cluster_id# 扩展聚类expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts)# 返回每个数据点的聚类标签return labelsdef expand_cluster(data, labels, neighbors, cluster_id, eps, min_pts):# 遍历每个邻居点for neighbor in neighbors:# 如果邻居点的标签为 -1if labels[neighbor] == -1:# 将噪声点标记为当前聚类 idlabels[neighbor] = cluster_id# 如果邻居点的标签为 0elif labels[neighbor] == 0:# 将邻居点标记为当前聚类 idlabels[neighbor] = cluster_id# 获取邻居点的邻居点new_neighbors = get_neighbors(data, neighbor, eps)# 如果新的邻居点数量满足最小邻居数量要求,则将其加入邻居列表if len(new_neighbors) >= min_pts:neighbors += new_neighborsdef get_neighbors(data, point_idx, eps):# 邻居点列表neighbors = []for i in range(len(data)):# 计算当前点与目标点之间的欧氏距离,如果距离小于邻域半径 epsif np.linalg.norm(data[i] - data[point_idx]) < eps:# 将目标点的索引加入邻居点列表neighbors.append(i)# 返回邻居点列表return neighborsnp.random.seed(0)
# 生成样例数据
data, y = make_blobs(n_samples=200, centers=5, cluster_std=0.6)
print(Counter(y))eps, min_pts = 0.6, 3
# 进行聚类
labels = dbscan(data, eps, min_pts)
print(Counter(labels))

上述代码实现了一个简单的 DBSCAN 算法。注意,在实际应用中,你需要根据实际情况调整邻域半径参数和核心点周围最小数据点数。
一般情况下,最小数据点数取数据维度值的 2 倍数,最小取 3。 该参数越大,可能的噪声点会被聚类,同样的邻域半径越小,噪声点也会被分类。

这篇关于DBSCAN 算法【python,机器学习,算法】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035016

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar