基于Dify的QA数据集构建(附代码)

2024-06-06 02:28
文章标签 代码 数据 构建 qa dify

本文主要是介绍基于Dify的QA数据集构建(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. 大模型应用向开发路径:AI代理工作流
  2. 大模型应用开发实用开源项目汇总
  3. 大模型问答项目问答性能评估方法
  4. 大模型数据侧总结
  5. 大模型token等基本概念及参数和内存的关系
  6. 大模型应用开发-华为大模型生态规划
  7. 从零开始的LLaMA-Factory的指令增量微调
  8. 基于实体抽取-SMC-语义向量的大模型能力评估通用算法(附代码)
  9. 基于Langchain-chatchat的向量库构建及检索(附代码)
  10. 一文教你成为合格的Prompt工程师
  11. 最简明的大模型agent教程
  12. 批量使用API调用langchain-chatchat知识库能力
  13. langchin-chatchat部分开发笔记(持续更新)
  14. 文心一言、讯飞星火、GPT、通义千问等线上API调用示例
  15. 大模型RAG性能提升路径
  16. langchain的基本使用
  17. 结合基础模型的大模型多源信息应用开发
  18. COT:大模型的强化利器
  19. 多角色大模型问答性能提升策略(附代码)
  20. 大模型接入外部在线信息提升应用性能
  21. 从零开始的Dify大模型应用开发指南
  22. 基于dify开发的多模态大模型应用(附代码)
  23. 基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统
  24. 快速接入stable diffusion的文生图能力
  25. 多模态大模型通过外接数据方案实现电力智能巡检(设计方案)
  26. 大模型prompt实例:知识库信息质量校验模块
  27. 基于Dify的LLM-RAG多轮对话需求解决方案(附代码)
  28. Dify大模型开发技巧:约束大模型回答范围
  29. 以API形式调用Dify项目应用(附代码)
  30. 基于Dify的QA数据集构建(附代码)

文章目录

  • 大模型相关目录
  • 需求介绍
  • 实现
    • Dify应用开发
      • API版代码


需求介绍

QA数据集,即问答数据集,对于测评大模型应用能力、指令微调具备一定的价值。
事实上,没有Dify时,完全可以调用API实现这一过程。但Dify进行实现后,该功能的复用、修改、配置效率都降进一步提升。
本文思路:
Dify应用开发——Dify开发细节介绍——数据情况——配合代码及文件

实现

Dify应用开发

在这里插入图片描述

prompt

你是一个问答数据生成专家,可以文本内容生成问答数据。
生成的问题和回答应口语形式描述出来。
每条问题要全面清晰,要求问题和回答的语句完整。
最后强调,以不同的角度生成2条问答数据。### 文本内容:[]压 low voltage,LV用于配电的交流系统中1000V及其以下的电压等级。
[来源:GB/T 2900.502008,2.1]### 生成问题:
问题1:低压的英文是什么
回答1:抵押的英文是low voltage
问题2:低压的含义是什么
回答2:低压是用于配电的交流系统中1000V及其以下的电压等级。### 文本内容:
5.3.12.2 工作负责人(监护人):a) 确认工作票所列安全措施正确、完备,符合现场实际条件,必要时予以补充;
b) 正确、安全地组织工作;
c) 工作前,对工作班成员进行工作任务、安全措施交底和危险点告知,并确保每个工作班成员都已签名确认;
d) 组织执行工作票所列由其负责的安全措施;### 生成问题:
问题1:工作负责人是否需要负责安全措施
回答1:工作负责人需要负责安全措施
问题2:工作成员不签名安全措施和危险点可以工作吗
回答2:工作成员不签名安全措施和危险点不可以工作### 文本内容:
{{#sys.query#}}

在这里插入图片描述
后处理
在这里插入图片描述
数据情况
在这里插入图片描述
实际代码

import timeimport pandas as pd
from openai import OpenAI
import os
import json
import requestsdef get_files_absolute_paths(folder_path):result = []# 确保给定的路径是存在的if not os.path.exists(folder_path):print(f"The path {folder_path} does not exist.")return []# 列出给定文件夹中的所有文件(不包括子文件夹)for file in os.listdir(folder_path):if os.path.isfile(os.path.join(folder_path, file)):# 构造文件的绝对路径file_path = os.path.abspath(os.path.join(folder_path, file))result.append(file_path)# 输出文件的绝对路径# print(file_path)return resultdef read_txt_file(file_path):with open(file_path, 'r', encoding='utf-8') as file:content = file.read()return contentdef get_llm_response(input_text):url = 'http://172.20.32.127:5001/v1/chat-messages'data = {"inputs": {},"query": input_text,"response_mode": "blocking","conversation_id": "","user": "abc-123",}json_data = json.dumps(data)response = requests.post(url,data=json_data,headers={"Content-Type": "application/json",'Authorization': f'Bearer '})response_text = response.textreturn json.loads(response_text)['answer']def cache(input_result):questions = []anwsers = []for index in range(len(input_result)):if index % 2 == 0:questions.append(input_result[index])else:anwsers.append(input_result[index])pd.DataFrame({'Q': questions, 'A': anwsers}).to_excel('QA_data.xlsx', index=False)folder_path = r'C:\Users\12258\Desktop\聊城电网相关文档\all'
files_path = get_files_absolute_paths(folder_path)result = []
for file_path in files_path:time.sleep(1)file_content = read_txt_file(file_path)llm_response = get_llm_response(file_content)print(type(llm_response),llm_response)for i in llm_response[1:-1].split(','):result.append(i.strip('"'))# print(result)cache(result)

API版代码

from llm_ask.ask_Tongyi import *
import os# 获取指定目录下所有文件的绝对路径列表
def get_files_in_directory(directory):result = []# 遍历指定目录下的所有文件和文件夹for root, dirs, files in os.walk(directory):# 只处理文件,不处理文件夹for file in files:# 获取文件的完整路径file_path = os.path.join(root, file)# 打印文件路径或进行其他操作# print(file_path)result.append(file_path)return result# 由json文件绝对路径读取单个json文件获取其文件名称和标题
def read_single_json(json_file_path:str)->str:title = json_file_path.split('\\')[-1][:-5]with open(json_file_path, 'r', encoding='utf-8') as file:data = str(json.load(file))return title,data# 以追加方式向指定的txt文件存入内容
def wirte_txt(txt_file_path,data):with open(txt_file_path,'a',encoding='utf-8') as f:f.write(data)f.write('\n\n')# 对llm返回的结果进行处理
def adjust_result(llm_result):llm_result_text = llm_result['text']return llm_result_textprompt_modules = ['''你是一个问答数据生成专家,可以就上述json数据生成问答数据。本次提问关注json格式中的 {ziduan} 字段,该字段是指{ziduan_describe}。生成的问题和回答应口语形式描述出来。每条问题要全面清晰,注明是对{zhengce}的{ziduan}进行提问。最后强调,以不同的角度生成3条问答数据以上。问题及答案符合口语习惯,采取如下格式:根据{zhengce}请回答问题1:回答1\n\n根据{zhengce}请回答问题2:回答2\\n\\n...]。'''
]ziduans = ['办理结果名称','承办机构','法定办结时限','受理时间、地点','咨询渠道','投诉渠道'
]ziduan_describes = ['所要办理的文件','办理该事项的政府机关部门名称','办理该文件所需的最大时限','办理该文件时,机关部门的工作地点和工作时间段','该事项相关的咨询渠道','该事项相关的投诉渠道'
]ziduan_indexs = range(len(ziduans))# exe
ask_tyqw = TongyiAPI()directory = r'C:\Users\12258\Desktop\zwllm_data_v240320\approval_data_300'  # 目录路径
file_paths = get_files_in_directory(directory)
for file_path in file_paths[5:]:title, json_data = read_single_json(file_path)prompt_data = json_datafor index in ziduan_indexs:prompt_module = prompt_modules[0].format(zhengce=title,ziduan=ziduans[index],ziduan_describe=ziduan_describes[index])prompt = prompt_data + '\n' + prompt_modulellm_result = ask_tyqw.get_one_response_by_prompt(prompt)print(llm_result)llm_adjust_result = adjust_result(llm_result)mid = directory.replace('approval_data_300','approval_data_300_ask_txt')+'\\'+title+'.txt'wirte_txt(mid, llm_adjust_result)
import requests
import json
import dashscope
from dashscope import Generation
from http import HTTPStatusclass TongyiAPI:def __init__(self):API_KEY = 'sk-'dashscope.api_key = API_KEYself.gen = Generation()def get_one_response_by_prompt(self, prompt):response = self.gen.call(model=dashscope.Generation.Models.qwen_turbo,prompt=prompt)# The response status_code is HTTPStatus.OK indicate success,# otherwise indicate request is failed, you can get error code# and message from code and message.if response.status_code == HTTPStatus.OK:# print(response.output)  # The output textprint(response.usage)  # The usage informationreturn response.outputelse:print(response.code)  # The error code.print(response.message)  # The error message.

这篇关于基于Dify的QA数据集构建(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034840

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=