基于Dify的QA数据集构建(附代码)

2024-06-06 02:28
文章标签 代码 数据 构建 qa dify

本文主要是介绍基于Dify的QA数据集构建(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. 大模型应用向开发路径:AI代理工作流
  2. 大模型应用开发实用开源项目汇总
  3. 大模型问答项目问答性能评估方法
  4. 大模型数据侧总结
  5. 大模型token等基本概念及参数和内存的关系
  6. 大模型应用开发-华为大模型生态规划
  7. 从零开始的LLaMA-Factory的指令增量微调
  8. 基于实体抽取-SMC-语义向量的大模型能力评估通用算法(附代码)
  9. 基于Langchain-chatchat的向量库构建及检索(附代码)
  10. 一文教你成为合格的Prompt工程师
  11. 最简明的大模型agent教程
  12. 批量使用API调用langchain-chatchat知识库能力
  13. langchin-chatchat部分开发笔记(持续更新)
  14. 文心一言、讯飞星火、GPT、通义千问等线上API调用示例
  15. 大模型RAG性能提升路径
  16. langchain的基本使用
  17. 结合基础模型的大模型多源信息应用开发
  18. COT:大模型的强化利器
  19. 多角色大模型问答性能提升策略(附代码)
  20. 大模型接入外部在线信息提升应用性能
  21. 从零开始的Dify大模型应用开发指南
  22. 基于dify开发的多模态大模型应用(附代码)
  23. 基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统
  24. 快速接入stable diffusion的文生图能力
  25. 多模态大模型通过外接数据方案实现电力智能巡检(设计方案)
  26. 大模型prompt实例:知识库信息质量校验模块
  27. 基于Dify的LLM-RAG多轮对话需求解决方案(附代码)
  28. Dify大模型开发技巧:约束大模型回答范围
  29. 以API形式调用Dify项目应用(附代码)
  30. 基于Dify的QA数据集构建(附代码)

文章目录

  • 大模型相关目录
  • 需求介绍
  • 实现
    • Dify应用开发
      • API版代码


需求介绍

QA数据集,即问答数据集,对于测评大模型应用能力、指令微调具备一定的价值。
事实上,没有Dify时,完全可以调用API实现这一过程。但Dify进行实现后,该功能的复用、修改、配置效率都降进一步提升。
本文思路:
Dify应用开发——Dify开发细节介绍——数据情况——配合代码及文件

实现

Dify应用开发

在这里插入图片描述

prompt

你是一个问答数据生成专家,可以文本内容生成问答数据。
生成的问题和回答应口语形式描述出来。
每条问题要全面清晰,要求问题和回答的语句完整。
最后强调,以不同的角度生成2条问答数据。### 文本内容:[]压 low voltage,LV用于配电的交流系统中1000V及其以下的电压等级。
[来源:GB/T 2900.502008,2.1]### 生成问题:
问题1:低压的英文是什么
回答1:抵押的英文是low voltage
问题2:低压的含义是什么
回答2:低压是用于配电的交流系统中1000V及其以下的电压等级。### 文本内容:
5.3.12.2 工作负责人(监护人):a) 确认工作票所列安全措施正确、完备,符合现场实际条件,必要时予以补充;
b) 正确、安全地组织工作;
c) 工作前,对工作班成员进行工作任务、安全措施交底和危险点告知,并确保每个工作班成员都已签名确认;
d) 组织执行工作票所列由其负责的安全措施;### 生成问题:
问题1:工作负责人是否需要负责安全措施
回答1:工作负责人需要负责安全措施
问题2:工作成员不签名安全措施和危险点可以工作吗
回答2:工作成员不签名安全措施和危险点不可以工作### 文本内容:
{{#sys.query#}}

在这里插入图片描述
后处理
在这里插入图片描述
数据情况
在这里插入图片描述
实际代码

import timeimport pandas as pd
from openai import OpenAI
import os
import json
import requestsdef get_files_absolute_paths(folder_path):result = []# 确保给定的路径是存在的if not os.path.exists(folder_path):print(f"The path {folder_path} does not exist.")return []# 列出给定文件夹中的所有文件(不包括子文件夹)for file in os.listdir(folder_path):if os.path.isfile(os.path.join(folder_path, file)):# 构造文件的绝对路径file_path = os.path.abspath(os.path.join(folder_path, file))result.append(file_path)# 输出文件的绝对路径# print(file_path)return resultdef read_txt_file(file_path):with open(file_path, 'r', encoding='utf-8') as file:content = file.read()return contentdef get_llm_response(input_text):url = 'http://172.20.32.127:5001/v1/chat-messages'data = {"inputs": {},"query": input_text,"response_mode": "blocking","conversation_id": "","user": "abc-123",}json_data = json.dumps(data)response = requests.post(url,data=json_data,headers={"Content-Type": "application/json",'Authorization': f'Bearer '})response_text = response.textreturn json.loads(response_text)['answer']def cache(input_result):questions = []anwsers = []for index in range(len(input_result)):if index % 2 == 0:questions.append(input_result[index])else:anwsers.append(input_result[index])pd.DataFrame({'Q': questions, 'A': anwsers}).to_excel('QA_data.xlsx', index=False)folder_path = r'C:\Users\12258\Desktop\聊城电网相关文档\all'
files_path = get_files_absolute_paths(folder_path)result = []
for file_path in files_path:time.sleep(1)file_content = read_txt_file(file_path)llm_response = get_llm_response(file_content)print(type(llm_response),llm_response)for i in llm_response[1:-1].split(','):result.append(i.strip('"'))# print(result)cache(result)

API版代码

from llm_ask.ask_Tongyi import *
import os# 获取指定目录下所有文件的绝对路径列表
def get_files_in_directory(directory):result = []# 遍历指定目录下的所有文件和文件夹for root, dirs, files in os.walk(directory):# 只处理文件,不处理文件夹for file in files:# 获取文件的完整路径file_path = os.path.join(root, file)# 打印文件路径或进行其他操作# print(file_path)result.append(file_path)return result# 由json文件绝对路径读取单个json文件获取其文件名称和标题
def read_single_json(json_file_path:str)->str:title = json_file_path.split('\\')[-1][:-5]with open(json_file_path, 'r', encoding='utf-8') as file:data = str(json.load(file))return title,data# 以追加方式向指定的txt文件存入内容
def wirte_txt(txt_file_path,data):with open(txt_file_path,'a',encoding='utf-8') as f:f.write(data)f.write('\n\n')# 对llm返回的结果进行处理
def adjust_result(llm_result):llm_result_text = llm_result['text']return llm_result_textprompt_modules = ['''你是一个问答数据生成专家,可以就上述json数据生成问答数据。本次提问关注json格式中的 {ziduan} 字段,该字段是指{ziduan_describe}。生成的问题和回答应口语形式描述出来。每条问题要全面清晰,注明是对{zhengce}的{ziduan}进行提问。最后强调,以不同的角度生成3条问答数据以上。问题及答案符合口语习惯,采取如下格式:根据{zhengce}请回答问题1:回答1\n\n根据{zhengce}请回答问题2:回答2\\n\\n...]。'''
]ziduans = ['办理结果名称','承办机构','法定办结时限','受理时间、地点','咨询渠道','投诉渠道'
]ziduan_describes = ['所要办理的文件','办理该事项的政府机关部门名称','办理该文件所需的最大时限','办理该文件时,机关部门的工作地点和工作时间段','该事项相关的咨询渠道','该事项相关的投诉渠道'
]ziduan_indexs = range(len(ziduans))# exe
ask_tyqw = TongyiAPI()directory = r'C:\Users\12258\Desktop\zwllm_data_v240320\approval_data_300'  # 目录路径
file_paths = get_files_in_directory(directory)
for file_path in file_paths[5:]:title, json_data = read_single_json(file_path)prompt_data = json_datafor index in ziduan_indexs:prompt_module = prompt_modules[0].format(zhengce=title,ziduan=ziduans[index],ziduan_describe=ziduan_describes[index])prompt = prompt_data + '\n' + prompt_modulellm_result = ask_tyqw.get_one_response_by_prompt(prompt)print(llm_result)llm_adjust_result = adjust_result(llm_result)mid = directory.replace('approval_data_300','approval_data_300_ask_txt')+'\\'+title+'.txt'wirte_txt(mid, llm_adjust_result)
import requests
import json
import dashscope
from dashscope import Generation
from http import HTTPStatusclass TongyiAPI:def __init__(self):API_KEY = 'sk-'dashscope.api_key = API_KEYself.gen = Generation()def get_one_response_by_prompt(self, prompt):response = self.gen.call(model=dashscope.Generation.Models.qwen_turbo,prompt=prompt)# The response status_code is HTTPStatus.OK indicate success,# otherwise indicate request is failed, you can get error code# and message from code and message.if response.status_code == HTTPStatus.OK:# print(response.output)  # The output textprint(response.usage)  # The usage informationreturn response.outputelse:print(response.code)  # The error code.print(response.message)  # The error message.

这篇关于基于Dify的QA数据集构建(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034840

相关文章

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转