【python】python租房数据分析可视化(源码+数据+报告)【独一无二】

本文主要是介绍【python】python租房数据分析可视化(源码+数据+报告)【独一无二】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python租房数据分析可视化(源码+数据+报告)【独一无二】


目录

  • 【python】python租房数据分析可视化(源码+数据+报告)【独一无二】
  • 一、设计要求
  • 二、数据分析可视化


一、设计要求

背景:
随着在线租房平台的兴起,大量的租房数据被生成和存储。这些数据包含了丰富的信息,如房屋类型、
地理位置、租金、设施等。通过对这些数据的分析,我们可以了解租房市场的趋势、租户的偏好以及
不同区域的租金差异等。

要求:
1.数据收集:(数据已获取–租房数据.csv)
从某在线租房平台(如链家、贝壳找房等)获取租房数据,或使用公开可用的租房数据集。
数据应包含至少以下字段:房屋类型、地理位置(具体到小区或街道)、租金、面积、卧室数量、
是否包含某些设施(如空调、独立卫生间等)。

2.数据清洗:
对收集到的数据进行清洗,处理缺失值、异常值以及重复数据。
根据需要对数据进行适当的转换(如将租金从文本转换为数字类型)。

3.数据分析:
使用Python的pandas库对数据进行基本的统计分析,如计算租金的平均值、中位数、众数等。
使用matplotlib或seaborn库绘制图表,展示租金与地理位置、房屋类型、面积等因素的关系。
分析不同区域的租金差异,并尝试解释这些差异的原因(如交通便利性、周边设施等)。
分析租户的偏好,如哪些设施对租户来说是最重要的。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈


二、数据分析可视化

首先,对租金进行基本统计分析,包括计算租金的平均值、中位数和众数,并绘制租金分布的直方图。

import matplotlib.pyplot as pltimport seaborn as sns
# 租金的基本统计分析print(data['租金'].describe())
# 绘制租金的直方图
plt.figure(figsize=(10, 6))
sns.histplot(data['租金'], kde=True)
plt.title('租金分布')
plt.xlabel('租金 (元)')
plt.ylabel('频数')
plt.show()

在这里插入图片描述
从租金分布图中可以看出,大多数房屋的租金集中在6000元到15000元之间,部分高档别墅的租金超过20000元。

不同房屋类型的租金统计
通过箱线图展示不同房屋类型的租金分布情况,可以看出别墅的租金普遍较高,而公寓和一室一厅的租金较低。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

# 不同房屋类型的租金统计
plt.figure(figsize=(12, 8))
sns.boxplot(x='房屋类型', y='租金', data=data)
plt.title('不同房屋类型的租金分布')
plt.xlabel('房屋类型')
plt.ylabel('租金 (元)')
plt.show()

在这里插入图片描述

不同地理位置的租金统计
通过箱线图展示不同地理位置的租金分布情况,可以发现一些核心区域(如朝阳区、海淀区)的租金明显高于其他区域。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

# 不同地理位置的租金统计
plt.figure(figsize=(15, 10))
sns.boxplot(x='地理位置', y='租金', data=data)
plt.title('不同地理位置的租金分布')
plt.xlabel('地理位置')
plt.ylabel('租金 (元)')
plt.xticks(rotation=90)
plt.show()

在这里插入图片描述

不同面积段的租金统计
将面积分为多个区间,展示不同面积段的租金分布情况。通常,面积越大,租金越高。

# 不同面积段的租金统计
data['面积段'] = pd.cut(data['面积(平方米)'], bins=[0, 50, 100, 150, 200, 250, 300], labels=['0-50', '51-100', '101-150', '151-200', '201-250', '251-300'])
plt.figure(figsize=(12, 8))
sns.boxplot(x='面积段', y='租金', data=data)
plt.title('不同面积段的租金分布')
plt.xlabel('面积段 (平方米)')
plt.ylabel('租金 (元)')
plt.show()

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

各区域租金的平均值
计算并展示各区域租金的平均值,发现朝阳区和海淀区的租金较高,而远郊区县的租金相对较低。

# 各区域租金的平均值
avg_rent_per_location = data.groupby('地理位置')['租金'].mean().sort_values()
plt.figure(figsize=(15, 10))
avg_rent_per_location.plot(kind='barh')
plt.title('各区域租金的平均值')
plt.xlabel('平均租金 (元)')
plt.ylabel('地理位置')
plt.show()

在这里插入图片描述
租户对设施的偏好
分析租户对空调和独立卫生间这两个设施的偏好情况,发现大多数租户更偏好有空调和独立卫生间的房屋。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

# 分析租户对设施的偏好
facility_prefs = data[['包含空调', '包含独立卫生间']].apply(pd.Series.value_counts)
facility_prefs.plot(kind='bar', stacked=True, figsize=(10, 6))
plt.title('租户对设施的偏好')
plt.xlabel('设施')
plt.ylabel('数量')
plt.xticks(rotation=0)
plt.show()

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

这篇关于【python】python租房数据分析可视化(源码+数据+报告)【独一无二】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034658

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: