不吹不黑 | 聊聊为什么要用99%精度的数据回测

2024-06-05 10:18

本文主要是介绍不吹不黑 | 聊聊为什么要用99%精度的数据回测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

  • 写在前面的话

    文字并不具备精确传递信息的能力。除了程序员和律师等少数群体,很少人能保证自己说的东西能在一句话中被清晰传递的。所以,带着思考阅读从而帮助完善你的知识体系,改变你的行为,这才是您耗费时间,阅读本篇文章的意义。

    因此,在阅读本篇文章之前,我希望您能放下心里已有的成见,否则就算您通篇读完,留下的也只是带有您个人偏见的理解。您获得的多少并不取决于读了多少,而取决于您以空杯的心态,思考了多少、多深。

  • 什么是Bar数据

    在讲之前,先讲一下Bar数据。所谓的Bar数据,泛指普通的 K 线。在单独的每个Bar上面包含开盘价、收盘 价、最高价、最低价、成交量及时间。所有的Bar按照不同周期组合,并按照时间从先到后进行排列,由此形成为序列数据,整个序列称之为Bar数据。

    如果交易策略是基于Bar数据回测。按照Bar数据的Bar数目,从第一个Bar到最后一个Bar,依次进行计算,如果公式中出现了调用Bar数据函数的,则取出当前Bar的相应值,进行运算。如下图箭头所示,公式执行从上至下,Bar从左到右执行。

    Bar数据应用于非即时发单策略,是没有问题的。比如:当前条件成立,那么就在下根Bar发单。由于Bar数据量往往不是很大,在上百种上千组合回测或优化时,速度非常快。

  • bar数据回测的弊端

    大多数量化软件中,调用那个级别的数据,就是哪个级别的Bar。5分钟周期级别的Bar就是5分钟时间序列的开高低收等。一般最小级别是1分钟,也就是回测时只能使用1分钟级别粒度的数据。

    那么问题来了,1分钟以下的数据变动是无法得知的。这种数据与当时的实际市况有所差别,一个个小的差异积累起来就造成了与真实结果的巨大差异。

    就拿上图中,箭头所指的Bar来说:这是根带上下影线的阴线,图表级别为60分钟,你认为在60分钟里,价格怎么运动,才最终形成这根Bar。

    答案是:有非常非常多种可能。它有可能开盘就先上涨,创造出一个上影线。然后转头向下,创造出一个下影线。然后再转头向上收盘;它也可能开盘就砸盘,直接创造出一个下影线。然后转头向上,创造出一个上影线。然后再转头向下收盘。总之,在这根Bar最终形成之前的60分钟内,价格的波动有很多种可能。

    如果即时策略用Bar数据回测,回测引擎只是根据Bar的开高低收等,做计算。因为回测引擎并不知道价格是如何跳动才形成最终的Bar。在Bar中,价格即有可能先上后下,也有可能先下后上。

    还有一个更为重要的弊端。在Bar回测中,并没有参考盘口数据,比如:买一价和卖一价。在Bar数据回测中,只要触发开平仓的价格在最高价与最低价之内,都能成交。但此时此刻如果恰好没有对手盘的话,那么Bar回测引擎在撮合的时候是检测不出来的。一次两次影响不大,但只要Bar的数据足够多,就足以产生以假乱真的虚假绩效报告。

  • 举个栗子

    我举一个很简单的例子做范例说明。策略描述:当均线往上时往上触碰现在K线高点时作多、当均线往下时往下触碰现在K线低点时放空,另外加上移动出场─当获利大于等于10点后,折返获利1%就出场。

    代码如下:

    回测如下:

    如果你在开发交易策略的时候看到这个现象就很兴奋的以为自己发现圣杯的话... 那么你就想错了。

    钱有这么好赚就好了啦=_=。这样的回测报表一整个就是垃圾!因为那些出场点位几乎可以说都是做不到的!!

    上面这图,空心三角形就是出场位置的标示,看看那个出场标示在哪边?没错,就是K线的最高点,请想一想这有没有问题?我们定下的出场除了多空翻单外,就是移动出场,既然移动出场要有折返才会出场,那出场点在K线的最高点有可能吗?

    如果使用99%精度的Tick数据,回测如下:

    这篇简单的范例不是想指出用很灵敏的移动出场是不可行的,而是说这种的即时策略,在真实运作时会是怎样的状况?至于,造成这个垃圾回测报表的原因,我就不多叙述了。直接告诉你如何呈现实况:使用99%精度的Tick数据。

  • 什么是Tick数据

    Tick数据就是交易所中最详尽的交易数据结构。包括:开盘价、最高价、最低价、最新价、成交量、成交额。如果把交易数据比喻成河流,Tick数据就是这个河流在某个横截面的数据。

    如上图所示,国外交易所每个动作都会实时推送到市场上来。而国内交易所,每秒两次进行检查,如果该时间段内有动作,则生成一次快照并且推送出来。相比较而言,数据的推送充其量只能算做 OnTime,而不能叫做OnTick。

  • BotVS的Tick数据

    尽管国内Tick数据并不是真正意义上的 Tick,但是使用这种数据进行回测,至少可以无限接近和还原了现实。每个Tick中显示着当时这个商品在市场中的主要参数,并且在实盘中我们的代码,就是跟着理论每秒 2 次的Tick在进行计算。

    不仅如此,在 BotVS 中即使加载的是1小时周期的数据,依然可以调整数据粒度,比如将数据粒度调整为 1 分钟。此时此刻的1小时K线就是用1分钟数据组成的。当然,粒度越小,精度越高。

    更为强大的是,如果将数据切换为实盘级Tick,就可以无缝还原真实的实盘环境。即1秒2次Tick交易所的真实数据。

  • 总结

    你不可能拿着玩具枪就上战场,不是吗?在开始实盘之前,我们都会慎之又慎。客观的压力检验,能帮你省下许多真金白银,而这些损失通常都是不必要的。

    那么历史数据的准确性就成了你的交易策略检验结果的关键因素之一,假如你的数据是不准确的,那么在这种数据下的优化和回测必然也是无法在市场中进行的。

    否则在Bar模式下看着很爽的模型,到最后变成一个很爽的陷阱......回测,就是要对自己狠一点......

这篇关于不吹不黑 | 聊聊为什么要用99%精度的数据回测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032782

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本