【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}

本文主要是介绍【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析},希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、经验总结

优先级队列(堆),常用于在集合中筛选最值或解决TopK问题。

提示:对于固定序列的TopK问题,最优解决方案是快速选择算法,时间复杂度为O(N)比堆算法O(NlogK)更优;而对于动态维护数据流中的TopK,最优解决方案是堆算法,每次添加数据后筛选,时间复杂度为O(logK)比快速选择算法O(N)更优;

优先级队列如何解决TopK问题?

  1. 创建一个大小为K的堆
  2. 循环
    1. 将数组中的元素依次进堆
    2. 判断堆中的元素个数是否大于K,如果大于K就pop弹出堆顶元素
  3. 将数组中的所有元素全部筛选一遍后,堆中剩余的K个元素就是最大(小)的K个元素

TopK问题选用大根堆还是小根堆?

  • 如果要选出最大的K个数,就选用小根堆;
  • 如果要选出最小的K个数,就选用大根堆;

利用大小堆维护数据流中的中位数

  1. 创建一个大堆left用于存储数据流的前一半(升序),一个小堆right用于存储后一半
  2. 控制left的元素个数m和right的元素个数n满足:m==n或m==n+1
  3. 数据流的中位数:当m==n时,mid=(left.top()+right.top())/2;当m==n+1时,mid=left.top();
  4. 新增元素:将新元素与left.top()(或right.top())比较,决定加入left还是right。完成插入后,记得调整两个堆的元素个数使其满足规则。

二、相关编程题

2.1 最后一块石头的重量

题目链接

1046. 最后一块石头的重量 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

利用堆结构筛选最大值

编写代码

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for(auto e : stones) heap.push(e);while(heap.size() >= 2){int s1 = heap.top();heap.pop();int s2 = heap.top();heap.pop();if(s1 > s2) heap.push(s1-s2);}if(heap.size() == 0) return 0;else return heap.top();}
};

2.2 数据流中的第 K 大元素

题目链接

703. 数据流中的第 K 大元素 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述
这道题更适合使用堆解决,因为add函数插入一个数字后返回当前数据中的第K大的元素,如果使用快速选则算法,复杂度为O(N);而使用堆算法,复杂度为O(logK)

编写代码

class KthLargest {priority_queue<int, vector<int>, greater<int>> _heap;int _k;
public:KthLargest(int k, vector<int>& nums) {_k = k;for(auto e : nums) add(e);}int add(int val) {_heap.push(val);if(_heap.size() > _k)_heap.pop();return _heap.top();}
};

2.3 前K个高频单词

题目链接

692. 前K个高频单词 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {typedef pair<string, int> PSI;struct Cmp{bool operator()(const PSI &left, const PSI &right){if(left.second != right.second) //出现频次不同,选出高频单词,按照小根堆的方式排列return left.second > right.second;elsereturn left.first < right.first; //出现频次相同,按字典序排序,按照大根堆的方式排列}};
public:vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string, int> hash;priority_queue<PSI, vector<PSI>, Cmp> heap;vector<string> ret(k);//统计所有单词的出现频次for(auto &str:words){++hash[str];} //用一个大小为k的堆筛选TopKfor(auto &psi:hash){heap.push(psi);if(heap.size() > k)heap.pop();}//将结果倒着放入数组for(int i = k-1; i >= 0; --i){ret[i] = heap.top().first;heap.pop();}return ret;}
};

2.4 数据流的中位数

题目链接

295. 数据流的中位数 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class MedianFinder {priority_queue<int> left; //大根堆priority_queue<int, vector<int>, greater<int>> right; //小根堆
public:MedianFinder() {}void addNum(int num) {if(left.size() > right.size()) //m > n{int x = left.top();if(num <= x){left.push(num);left.pop();right.push(x);}else{right.push(num);}}else //m == n{int y = right.empty()? 0:right.top();if(right.empty() || num < y){left.push(num);}else{right.push(num);right.pop();left.push(y);}}}double findMedian() {if(left.size() > right.size()) //m > nreturn (double)left.top();else //m == nreturn (left.top()+right.top())/2.0;}
};

这篇关于【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032775

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码