【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}

本文主要是介绍【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析},希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、经验总结

优先级队列(堆),常用于在集合中筛选最值或解决TopK问题。

提示:对于固定序列的TopK问题,最优解决方案是快速选择算法,时间复杂度为O(N)比堆算法O(NlogK)更优;而对于动态维护数据流中的TopK,最优解决方案是堆算法,每次添加数据后筛选,时间复杂度为O(logK)比快速选择算法O(N)更优;

优先级队列如何解决TopK问题?

  1. 创建一个大小为K的堆
  2. 循环
    1. 将数组中的元素依次进堆
    2. 判断堆中的元素个数是否大于K,如果大于K就pop弹出堆顶元素
  3. 将数组中的所有元素全部筛选一遍后,堆中剩余的K个元素就是最大(小)的K个元素

TopK问题选用大根堆还是小根堆?

  • 如果要选出最大的K个数,就选用小根堆;
  • 如果要选出最小的K个数,就选用大根堆;

利用大小堆维护数据流中的中位数

  1. 创建一个大堆left用于存储数据流的前一半(升序),一个小堆right用于存储后一半
  2. 控制left的元素个数m和right的元素个数n满足:m==n或m==n+1
  3. 数据流的中位数:当m==n时,mid=(left.top()+right.top())/2;当m==n+1时,mid=left.top();
  4. 新增元素:将新元素与left.top()(或right.top())比较,决定加入left还是right。完成插入后,记得调整两个堆的元素个数使其满足规则。

二、相关编程题

2.1 最后一块石头的重量

题目链接

1046. 最后一块石头的重量 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

利用堆结构筛选最大值

编写代码

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for(auto e : stones) heap.push(e);while(heap.size() >= 2){int s1 = heap.top();heap.pop();int s2 = heap.top();heap.pop();if(s1 > s2) heap.push(s1-s2);}if(heap.size() == 0) return 0;else return heap.top();}
};

2.2 数据流中的第 K 大元素

题目链接

703. 数据流中的第 K 大元素 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述
这道题更适合使用堆解决,因为add函数插入一个数字后返回当前数据中的第K大的元素,如果使用快速选则算法,复杂度为O(N);而使用堆算法,复杂度为O(logK)

编写代码

class KthLargest {priority_queue<int, vector<int>, greater<int>> _heap;int _k;
public:KthLargest(int k, vector<int>& nums) {_k = k;for(auto e : nums) add(e);}int add(int val) {_heap.push(val);if(_heap.size() > _k)_heap.pop();return _heap.top();}
};

2.3 前K个高频单词

题目链接

692. 前K个高频单词 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {typedef pair<string, int> PSI;struct Cmp{bool operator()(const PSI &left, const PSI &right){if(left.second != right.second) //出现频次不同,选出高频单词,按照小根堆的方式排列return left.second > right.second;elsereturn left.first < right.first; //出现频次相同,按字典序排序,按照大根堆的方式排列}};
public:vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string, int> hash;priority_queue<PSI, vector<PSI>, Cmp> heap;vector<string> ret(k);//统计所有单词的出现频次for(auto &str:words){++hash[str];} //用一个大小为k的堆筛选TopKfor(auto &psi:hash){heap.push(psi);if(heap.size() > k)heap.pop();}//将结果倒着放入数组for(int i = k-1; i >= 0; --i){ret[i] = heap.top().first;heap.pop();}return ret;}
};

2.4 数据流的中位数

题目链接

295. 数据流的中位数 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class MedianFinder {priority_queue<int> left; //大根堆priority_queue<int, vector<int>, greater<int>> right; //小根堆
public:MedianFinder() {}void addNum(int num) {if(left.size() > right.size()) //m > n{int x = left.top();if(num <= x){left.push(num);left.pop();right.push(x);}else{right.push(num);}}else //m == n{int y = right.empty()? 0:right.top();if(right.empty() || num < y){left.push(num);}else{right.push(num);right.pop();left.push(y);}}}double findMedian() {if(left.size() > right.size()) //m > nreturn (double)left.top();else //m == nreturn (left.top()+right.top())/2.0;}
};

这篇关于【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032775

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端