【异常分析:四分位距与3σ原则】

2024-06-04 23:04

本文主要是介绍【异常分析:四分位距与3σ原则】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 前言
    • 四分位距(IQR)
    • 3σ原则
    • 使用步骤
      • 计算四分位距
      • 应用3σ原则
    • 代码

前言

异常分析的目标是识别数据中的异常值,这些异常值可能是由于错误的记录、设备故障或者其他未知原因导致的。四分位距(interquartile range, IQR)和3σ原则(3 sigma rule)是两个常用的工具。

四分位距(IQR)

四分位距是统计学中用于度量数据离散程度的一种方法。它是指数据的上四分位数(Q3)与下四分位数(Q1)之间的差值,通常用于识别数据集中的离群值。计算四分位距的公式如下:

IQR=Q3-Q1

其中,Q1是数据的25th百分位数,Q3是数据的75th百分位数。

3σ原则

3σ原则是一种基于正态分布的统计学原则,用于判断数据中的异常值。根据3σ原则,如果数据服从正态分布,那么大约有68%的数据值落在均值加减一个标准差范围内,大约有95%的数据值落在均值加减两个标准差范围内,大约有99.7%的数据值落在均值加减三个标准差范围内。因此,超出均值加减三个标准差范围的数据可以被视为异常值。

使用步骤

计算四分位距

import numpy as np# 计算第一四分位数(Q1)
Q1 = np.percentile(data, 25)# 计算第三四分位数(Q3)
Q3 = np.percentile(data, 75)# 计算四分位距(IQR)
IQR = Q3 - Q1

应用3σ原则

# 计算数据的均值和标准差
mean = np.mean(data)
std_dev = np.std(data)# 计算异常值的阈值
threshold = 3 * std_dev# 根据3σ原则判断异常值
outliers = [x for x in data if abs(x - mean) > threshold]

代码

import numpy as np
import matplotlib.pyplot as plt# 示例数据
data = [100, 150, 200, 250, 300, 350, 400, 450, 500, 1000]# 计算四分位距
Q1 = np.percentile(data, 25)  # 第一四分位数
Q3 = np.percentile(data, 75)  # 第三四分位数
IQR = Q3 - Q1  # 四分位距
print("第一四分位数:", Q1)
print("第三四分位数:", Q3)
print("四分位距:", IQR)
print("异常值范围:", (Q1 - 1.5 * IQR, Q3 + 1.5 * IQR))# 应用3σ原则识别异常值
mean = np.mean(data)
std_dev = np.std(data)
threshold = 3 * std_dev
outliers = [x for x in data if abs(x - mean) > threshold]
print("异常值:", outliers)# 可视化
# 箱型图
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.boxplot(data)
plt.xlabel('数据')
plt.title('数据和异常值')
plt.show()

这篇关于【异常分析:四分位距与3σ原则】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031379

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1