【从零开始部署SAM(Segment Anything Model )大模型 3 Ubuntu20 离线部署 C++】

本文主要是介绍【从零开始部署SAM(Segment Anything Model )大模型 3 Ubuntu20 离线部署 C++】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里是目录

  • 总览
  • 环境配置
  • 模型准备
    • Moble SAM onnx模型获取
    • Moble SAM pre onnx模型获取
  • 运行
    • cmakelist
  • 运行结果

总览

相比于使用python离线部署SAM大模型,C++要麻烦的多,本篇的部署过程主要基于项目:https://github.com/dinglufe/segment-anything-cpp-wrapper

环境配置

模型准备

通过C++进行部署的主要原因就是希望能够有效的提升运行效率减少推理耗时,SAM大模型的官方网站中提供了vit_h,vit_l,vit_b三种大小不同的模型参数,在我们的实际运行中发现,以vit_h参数为例,对于一帧图像的整体运算时间高达6000ms(读取图像+推理+获得掩膜并显示),因此我们认为SAM的三种参数都不适用于C++的部署工作,我们最终选择了MobileSAM作为C++的实际部署模型

在项目中需要处理模型mobilesam.onnx和预处理模型mobilesam_process.onnx
在当前以有项目和博客指导这两种模型应该如何获取,但是都太过于笼统对初学者并不友好,在当初运行时走了很多弯路,在此给出详细步骤过程

Moble SAM onnx模型获取

懒彦祖传送门:

https://download.csdn.net/download/qq_43649786/89380411
这部分在mobilesam的官方项目中给出了方法https://github.com/ChaoningZhang/MobileSAM#onnx-export
非常详细,需要注意的是需要安装onnx=1.12.0 && onnxruntime=1.13.1

  1. 创建conda环境并激活
conda create --name mobilesam python=3.8
conda activate mobilesam
  1. 下载源码并配置环境(在此默认已安装pytorch和torchvision)
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
#如果不准备跑app.py下述可以不用
pip install gradio
#安装完后可能会出现打不开spyder的情况,运行以下指令
pip install Spyder
  1. 运行onnx生成文件
    注意此时系统的路径是在下载的源码内
python scripts/export_onnx_model.py --checkpoint ./weights/mobile_sam.pt --model-type vit_t --output ./mobile_sam.onnx

这么详细还搞不定我就真没办法了,彦祖

Moble SAM pre onnx模型获取

懒彦祖传送门:
https://download.csdn.net/download/qq_43649786/89380451

预训练的部分在部署项目中给出了代码
https://github.com/dinglufe/segment-anything-cpp-wrapper/blob/main/export_pre_model.py
但是同样有一些需要注意的点,首先在头文件的引用中需要将import segment_anything as SAM更改为import mobile_sam as SAM
需要注意的是如果没有在conda环境中配置mobileSAM环境和会出现问题,同时将SAM和mobileSAM同时安装在一个conda环境也有可能报错,在此建议分别安装

# import segment_anything as SAM
import mobile_sam as SAM

此处还需要一个mobileSAM 的.pt模型文件,在官方的项目中可自行下载:
https://github.com/ChaoningZhang/MobileSAM#onnx-export

完整代码

import torch
import numpy as np
import osfrom segment_anything.utils.transforms import ResizeLongestSidefrom onnxruntime.quantization import QuantType
from onnxruntime.quantization.quantize import quantize_dynamicoutput_names = ['output']# Gener
# Mobile-SAM
# # Download Mobile-SAM model "mobile_sam.pt" from https://github.com/ChaoningZhang/MobileSAM/blob/master/weights/mobile_sam.pt
import mobile_sam as SAM
checkpoint = 'mobile_sam.pt'
model_type = 'vit_t'
output_path = 'models/mobile_sam_preprocess.onnx'
quantize = False# Target image size is 1024x720
image_size = (1024, 720)output_raw_path = output_path
if quantize:# The raw directory can be deleted after the quantization is doneoutput_name = os.path.basename(output_path).split('.')[0]output_raw_path = '{}/{}_raw/{}.onnx'.format(os.path.dirname(output_path), output_name, output_name)
os.makedirs(os.path.dirname(output_raw_path), exist_ok=True)sam = SAM.sam_model_registry[model_type](checkpoint=checkpoint)
sam.to(device='cpu')
transform = ResizeLongestSide(sam.image_encoder.img_size)image = np.zeros((image_size[1], image_size[0], 3), dtype=np.uint8)
input_image = transform.apply_image(image)
input_image_torch = torch.as_tensor(input_image, device='cpu')
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]class Model(torch.nn.Module):def __init__(self, image_size, checkpoint, model_type):super().__init__()self.sam = SAM.sam_model_registry[model_type](checkpoint=checkpoint)self.sam.to(device='cpu')self.predictor = SAM.SamPredictor(self.sam)self.image_size = image_sizedef forward(self, x):self.predictor.set_torch_image(x, (self.image_size))if 'interm_embeddings' not in output_names:return self.predictor.get_image_embedding()else:return self.predictor.get_image_embedding(), torch.stack(self.predictor.interm_features, dim=0)model = Model(image_size, checkpoint, model_type)
model_trace = torch.jit.trace(model, input_image_torch)
torch.onnx.export(model_trace, input_image_torch, output_raw_path,input_names=['input'], output_names=output_names)if quantize:quantize_dynamic(model_input=output_raw_path,model_output=output_path,per_channel=False,reduce_range=False,weight_type=QuantType.QUInt8,)

运行

cmakelist

cmake_minimum_required(VERSION 3.21)
set(CMAKE_CXX_STANDARD 17)project(SamCPP)find_package(OpenCV CONFIG REQUIRED)
find_package(gflags CONFIG REQUIRED)set(ONNXRUNTIME_ROOT_DIR /home/ubuntu/onnxruntime-linux-x64-gpu-1.14.1)add_library(sam_cpp_lib SHARED sam.h sam.cpp click_sample.cpp)
set(onnxruntime_lib ${ONNXRUNTIME_ROOT_DIR}/lib/libonnxruntime.so)
target_include_directories(sam_cpp_lib PRIVATE ${ONNXRUNTIME_ROOT_DIR}/include)
target_link_libraries(sam_cpp_lib PRIVATE${onnxruntime_lib}${OpenCV_LIBS}
)add_executable(sam_cpp_test test.cpp)
target_link_libraries(sam_cpp_test PRIVATEsam_cpp_lib${OpenCV_LIBS}gflags
)

缺啥安啥

更改test.cpp中的路径:

DEFINE_string(pre_model, "models/mobile_sam_preprocess.onnx", "Path to the preprocessing model");
DEFINE_string(sam_model, "models/mobile_sam.onnx", "Path to the sam model");
DEFINE_string(image, "images/input.jpg", "Path to the image to segment");
DEFINE_string(pre_device, "cpu", "cpu or cuda:0(1,2,3...)");
DEFINE_string(sam_device, "cpu", "cpu or cuda:0(1,2,3...)");

确保以上路径都正确且可以访问到文件
在项目主文件夹内打开终端

编译

mkdir build
cd build
cmake ..
make -j2
cd ..
./build/sam_cpp_test

运行结果

在这里插入图片描述
在这里插入图片描述

都看到这了,点个赞再走吧彦祖

这篇关于【从零开始部署SAM(Segment Anything Model )大模型 3 Ubuntu20 离线部署 C++】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031163

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx