基于python下sko.GA的遗产算法解决CVRP(含容量约束的车辆最短路径)问题

本文主要是介绍基于python下sko.GA的遗产算法解决CVRP(含容量约束的车辆最短路径)问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多vehicle的CVRP看作是one vehicle的CVRP,只是在vehicle自身负载的货物不够时,需要返回depot点
题目如下:
在这里插入图片描述
python代码

from sko.GA import GA_TSP
import matplotlib.pyplot as plt
import numpy as np# 坐标分布情况,(4,4)为补货地点吗
points_coordinate = np.array([[4,4],[2,8],[8,8],[0,7],[1,7],[5,6],[7,6],[3,5],[6,5],[5,3],[8,3],[1,2],[2,2],[3,1],[6,1],[0,0],[7,0]] )
# 除初始点(4,4)以外,每个地点货物需求量
requirements = [1,1,2,4,2,4,8,8,1,2,1,2,4,4,8,8]plt.scatter(*list(zip(*points_coordinate)))
plt.show()

在这里插入图片描述

# 可以将补货行为理解为多车辆单次VRP,总需求/最大载量,最小需要4次
num_vehicle = 4
max_capacity = 15
num_points = len(points_coordinate)
num_customers = num_points - 1
distance_matrix = np.linalg.norm(points_coordinate[:, None, :] - points_coordinate[None, :, :], axis=-1)# 计算总行驶距离:初始点(4,4)到第1路径点+第1路径的到第n路径点再回到初始点
# routine中包含初始点,用于计算车辆回到初始点的距离
def obj_func(routine):num_points, = routine.shapereturn distance_matrix[0, routine[0]] \+ sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)]) \+ distance_matrix[routine[-1], 0]# 增加约束,计算所有超出最大载量的累积数值,当作在计算个体fitness的时候的惩罚
def constraint_capacity(routine):capacity = 0c = 0for i in routine:if i != 0:c += requirements[i-1]else:capacity += max(0, c-max_capacity)c = 0capacity = max(c-max_capacity, capacity)return capacityga_tsp = GA_TSP(func=obj_func, n_dim=num_customers, size_pop=200, max_iter=200, prob_mut=1)# 生产Chrom个体,每个个体代表一个routine
# np.zeros(shape=(ga_tsp.size_pop, num_vehicle-1):为3次回到初始点(首次出发不算在内)
# ga_tsp.Chrom + 1:为剔除初始点的points_coordinate中的index
ga_tsp.Chrom = np.concatenate([np.zeros(shape=(ga_tsp.size_pop, num_vehicle-1), dtype=int), ga_tsp.Chrom + 1],axis=1)
#添加约束
ga_tsp.has_constraint = True
ga_tsp.constraint_ueq = [constraint_capacity]
best_points, best_distance = ga_tsp.run()
print(best_distance)

画图

fig, ax = plt.subplots(1, 2)
best_points_ = np.concatenate([[0], best_points, [0]])
best_points_coordinate = points_coordinate[best_points_, :]
ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
ax[1].plot(ga_tsp.generation_best_Y)
plt.show()

在这里插入图片描述

这篇关于基于python下sko.GA的遗产算法解决CVRP(含容量约束的车辆最短路径)问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030755

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright