通过hmmlearn学习使用GaussianHMM高斯隐马尔科夫模型模型

2024-06-04 12:48

本文主要是介绍通过hmmlearn学习使用GaussianHMM高斯隐马尔科夫模型模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HMM主要解决的三个问题。
假设隐藏状态序列和观测状态序列分别使用Z和X表示,则解决的3个问题可表示为:
1.解码问题:已知模型参数和X,估计最可能的Z;维特比算法
2.概率问题:已知模型参数和X,估计X出现的概率;向前-向后算法
3.学习问题:仅给出X和隐藏层个数,估计模型参数。 B-W算法,通常是经过一定数量的训练以后,得到模型,然后解决问题1和2。
小贴士:
使用隐马尔可夫如何实现分类或者聚类?
设置一个得分阈值T,例如T属于(-1000,0),步长为100,然后迭代计算准确率和召回率,取出现准确率和召回率最好情况的阈值T作为分类,聚类判定点。

下面代码使用GaussianHMM,解决问题3的例子:

#coding=utf-8
'''
Created on 2018-1-22@author: 10205025
'''
import numpy as np
from hmmlearn import hmm# 这里假设隐藏层数量为5个    
model = hmm.GaussianHMM(n_components=5, n_iter=1000, tol=0.01,covariance_type="full")X1 = np.array([[2], [1],[0]])
X2 = np.array([[2], [1],[0],[2]])
X3 = np.array([[2], [1],[1]])
X4 = np.array([[2], [1],[0]])
X5 = np.array([[1], [2],[0]])X = np.vstack((X1,X2,X3,X4,X5))
print X
# [[2]
#  [1]
#  [0]
#  [2]
#  [1]
#  [0]
#  [2]
#  [2]
#  [1]
#  [1]
#  [2]
#  [1]
#  [0]
#  [1]
#  [2]
#  [0]]# 这里分别为X1,X2,X3,X4,X5的长度
X_lens = [3,4,3,3,3]
model.fit(X,X_lens)# 转换矩阵
print model.transmat_
# [[  4.90994062e-267   8.00000000e-001   1.00000000e-001   1.00000000e-001
#     4.90994062e-267]
#  [  1.00000000e-001   2.00000000e-001   3.00000000e-001   3.00000000e-001
#     1.00000000e-001]
#  [  5.00000000e-001   3.59090699e-133   2.80458184e-133   2.80458184e-133
#     5.00000000e-001]
#  [  5.00000000e-001   3.59090699e-133   2.80458184e-133   2.80458184e-133
#     5.00000000e-001]
#  [  4.90994062e-267   8.00000000e-001   1.00000000e-001   1.00000000e-001
#     4.90994062e-267]]# 正常的序列
test1 = np.array([[2, 1,0,2,1,0]]).T
print test1
# [[2]
#  [1]
#  [0]
#  [2]
#  [1]
#  [0]]
score = model.score(test1)
print score
# 10.1943163957# 不正常的序列
test2 = np.array([[2, 1,0,2,1,0,3]]).T
print test2
# [[2]
#  [1]
#  [0]
#  [2]
#  [1]
#  [0]
#  [3]]
score = model.score(test2)
print score
# -137.8727309

这篇关于通过hmmlearn学习使用GaussianHMM高斯隐马尔科夫模型模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030126

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows