Python | R 潜在混合模型

2024-06-04 06:04
文章标签 python 模型 混合 潜在

本文主要是介绍Python | R 潜在混合模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜用例

📜Python | MATLAB | R 心理认知数学图形模型推断 | 📜信用卡消费高斯混合模型 | 📜必修课学业成绩分布异常背景混合模型潜在类别分析

✒️潜在混合模型

本质上,混合模型(或混合分布)是将多个概率分布组合成一个概率分布。
P ( x ) = π 0 p 0 ( x ) + π 1 p 1 ( x ) + … + π i p i ( x ) s.t.  ∑ π i = 1 \begin{gathered} P(x)=\pi_0 p_0(x)+\pi_1 p_1(x)+\ldots+\pi_i p_i(x) \\ \text { s.t. } \sum \pi_i=1 \end{gathered} P(x)=π0p0(x)+π1p1(x)++πipi(x) s.t. πi=1
为了将这些分布组合在一起,我们为每个成分分布分配一个权重,使得该分布下的总概率总和为 1。一个简单的例子是包含 2 个高斯分布的混合分布。我们可以有 2 个具有不同均值和方差的分布,并使用不同的权重将这 2 个分布组合在一起。

具体来说,我们可以认为该分布源自一个两步生成过程。在此过程中,可以从 n 个不同的概率分布中生成一个数据点。首先,我们确定它来自哪个概率分布。这个概率就是权重 π i π_i πi。一旦选择了组件概率分布,就可以通过模拟组件概率分布本身来生成数据点。

高斯混合模型本质上是一种混合模型,其中所有分量分布都是高斯分布。
f ( x ) = π 0 N ( μ 0 , Σ 0 ) + π 1 N ( μ 1 , Σ 1 ) + … + π i N ( μ i , Σ i ) s.t.  ∑ π i = 1 \begin{gathered} f(x)=\pi_0 N\left(\mu_0, \Sigma_0\right)+\pi_1 N\left(\mu_1, \Sigma_1\right)+\ldots+\pi_i N\left(\mu_i, \Sigma_i\right) \\ \text { s.t. } \sum \pi_i=1 \end{gathered} f(x)=π0N(μ0,Σ0)+π1N(μ1,Σ1)++πiN(μi,Σi) s.t. πi=1
现在让我们试着理解为什么使用高斯分布来对混合物的成分进行建模。当查看数据集时,我们希望将相似的点聚类在一起。这些聚类通常本质上是球形或椭圆形的,因为我们希望将靠近的点聚类在一起。因此,正态分布是集群的良好模型。分布的均值将是簇的中心,而簇的形状和分布可以通过分布的协方差很好地建模。

集群的第二个变量是不同集群的相对大小。在有机数据集中,我们通常不期望集群的大小相同,这意味着某些集群的点数会比其他集群多。然后,集群的大小将由集群权重 π i \pi_i πi 决定。

在聚类的背景下,我们假设有 k k k 个影响因素影响数据的生成。每个影响因素都有不同的权重,对应于簇权重 π π π​​。

💦Python高斯混合模型

  • 基于概率的软聚类方法
  • 每个簇:一个生成模型(高斯或多项式)
  • 参数(例如平均值/协方差未知)

让我们生成一个示例数据集,其中点是从两个高斯过程之一生成的。第一个分布的平均值为 100,第二个分布的平均值为 90;和分布的标准差分别为 5 和 2。

第一个过程我们将获得60,000积分;第二个过程中50,000个点并将它们混合在一起。

import numpy as np
np.random.seed(0)import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
Mean1, Mean2  = 100.0, 90.0
Standard_dev1, Standard_dev2 = 5.0, 2.0
sample1, sample2 = 60000, 50000print('Input Normal_distb {:}: μ = {:1}, σ = {:.2}, n = {} '.format("1", Mean1, Standard_dev1, sample1))
print('Input Normal_distb {:}: μ = {:1}, σ = {:.2}, n = {} '.format("2", Mean2, Standard_dev2, sample2))
X1 = np.random.normal(loc = Mean1, scale = Standard_dev1, size = sample1)
X2 = np.random.normal(loc = Mean2, scale = Standard_dev2, size = sample2)# plot
fig = plt.figure(figsize=(8, 6), dpi=100)
sns.distplot(X1, bins=50, kde=True, norm_hist=True, label='Normal distribution 1')
sns.distplot(X2, bins=50, kde=True, norm_hist=True, label='Normal distribution 2')
plt.legend()
plt.show()
# save
fig.savefig('norm_distrib12.jpeg')
# mix two distrib together
X = np.hstack((X1, X2))# plot
fig = plt.figure(figsize=(8, 6), dpi=100)
sns.distplot(X, bins=50, kde=True, norm_hist=True, label='gaussian mixture')
plt.legend()
plt.show()
# save
fig.savefig('final_dt.jpeg')

因此,将这些过程混合在一起后,我们就得到了上图所示的数据集。我们可以注意到 2 个峰值:大约 90 和 100,但对于峰值中间的许多点,很难确定它们来自哪个分布。那么我们如何解决这个任务呢?我们可以使用高斯混合模型,该模型将使用期望最大化算法来估计分布的参数。

💦潜在变量最大似然估计(算法):

X = X.reshape((len(X), 1))  
from sklearn.mixture import GaussianMixtureGMM = GaussianMixture(n_components = 2, init_params = 'random')
GMM.fit(X)
print('Converged:', GMM.converged_) # check if the model has converged
Y = np.array([[105.0]])
prediction = GMM.predict_proba(Y)
print('Probability each Gaussian (state) in the model given each sample p = {}'.format(prediction))
print()
yhat = GMM.predict(X)print(yhat[:100])
print(yhat[-100:])
print(len(yhat[yhat==0]))
print(len(yhat[yhat==1]))

多元高斯:d > 1

from sklearn.datasets.samples_generator import make_blobs
from scipy.stats import multivariate_normalX, Y = make_blobs(cluster_std=1.0, random_state=123, n_samples=12000, centers=3)X = np.dot(X, np.random.RandomState(0).randn(2,2))x, y = np.meshgrid(np.sort(X[:,0]), np.sort(X[:,1]))
XY = np.array([x.flatten(), y.flatten()]).TGMM = GaussianMixture(n_components=3).fit(X) # instantiate and fit the model
print('Converged:', GMM.converged_) # check if the model has converged
means = GMM.means_ 
covariances = GMM.covariances_Y = np.array([[0.5], [0.5]])
prediction = GMM.predict_proba(Y.T)
print('Probability each Gaussian (state) in the model given each sample p = {}'.format(prediction))fig = plt.figure(figsize = (12,12), dpi = 100)
ax0 = fig.add_subplot(111)
ax0.scatter(X[:,0], X[:,1])
ax0.scatter(Y[0,:], Y[1,:], c = 'orange', zorder = 10, s = 100)
for m,c in zip(means,covariances):multi_normal = multivariate_normal(mean = m, cov = c)ax0.contour(np.sort(X[:,0]), np.sort(X[:,1]), multi_normal.pdf(XY).reshape(len(X), len(X)), colors='black', alpha=0.3)ax0.scatter(m[0], m[1], c = 'grey', zorder = 10, s = 100)plt.show()fig.savefig('2d.jpeg')

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python | R 潜在混合模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029257

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数