一文搞明白golang底层原子级内存操作 的使用(sync atomic包)

2024-06-04 03:44

本文主要是介绍一文搞明白golang底层原子级内存操作 的使用(sync atomic包),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在我们的程序开发中,对于并发的处理一直都是一件很头疼的事情(Rust这种天生无并发困扰的语言除外), 在go语言中,官方也给我们提供了底层的原子级内存操作,这对于同步算法的实现是非常有用的。

atomic包使用结论

        由于这个包里面定义的一堆函数官方都不推荐使用,所以这个包里面的函数仅作为参考。我们主要搞明白类型定义和使用即可。 这个atomic包里面的类型定义看似一大推,其实归纳起来就8种,分别是 :Bool, Int32/64, Uint32/64, Pointer, Uintptr, Value ;  还有他们的方法,基本都一样,即 最多也就以下这5个方法:

  1. Add对原子数增加的一个增量数据;
  2. Store将数据存储到原子中,当这个Store被调用的时候,他的数据是不允许被拷贝的;
  3. Load从原子中加载对应的数据;
  4. Swap使用新的数据替换就的数据;
  5. CompareAndSwap比较和交换数据。

只要你搞明白了上面的5个方法的使用,这个atomic包的使用也就明白了。

原子级内存操作使用示例

以下我们就以 atomic.Int64 类型的使用为例,来说明如何使用, 其他的类型使用都是一样的,不同的类型方法多少而已,只要有的方法实用都是一样的。

直接上测试用例, 看明白这个测试用例也就明白了, 里面都有详细的注释说明。

import ("sync/atomic""testing"
)// sync atomic数据类型操作使用示例, 单元测试用例
// 其他的另外7种atomic类型的使用和这个都类似,不在赘述!
// @author tekintian <tekintian@gmail.com>
// @see https://pkg.go.dev/sync/atomic
func TestAtomicType(t *testing.T) {// int64类型的原子数,//  他对于的类型声明是 type Int64 struct {// contains filtered or unexported fields}// 这个地方我们只需要定义就可以,不需要初始化. 其他几种类型也是一样var an1 atomic.Int64// 定义了变量后,我们就可以操作他对应的5个方法了an1.Store(10)     // 把 10存入这个原子变量an1.Add(1)        // 增量加1 类似于  10+1ret := an1.Load() // Load取出结果,这里ret为 11if ret != 11 {t.Fatalf("test failed expected 10, got %d", ret)} else {t.Logf("store 10 add 1 ok, got %d", ret)}an1.Swap(100) // 使用100对原子数据进行交换, 交换后的结果为100if an1.Load() != 100 {t.Fatalf("test failed expected to be 100, got %v", an1.Load())} else {t.Logf("an1.Swap(100) ok, got %d", an1.Load())}// 比较并交换,这里会拿第一个参数的值和原子数进行比较,//  如果第一个参数的值和原子数相等,就会拿第二个参数的值对对原子数进行交换, 否则返回false,不进行交换swapped := an1.CompareAndSwap(10, 200) // 第一个参数 10 和当前原子数100比较,不会被交换if !swapped {t.Logf("atomic data not swapped, now data is %v, but param1 for compare is 10", an1.Load())} else {t.Fatalf("an1.CompareAndSwap(10, 200) fail, expected 100 got %d", an1.Load())}if an1.CompareAndSwap(100, 200) { // 会被交换// 现在原子的数据应该是 200t.Logf("atomic data swapped, now data is %v ", an1.Load())} else {t.Fatalf("atomic data swapped failed: %v", an1.Load())}/*// 单元测试结果 下面的参数 -v 表示输出测试日志 即 使用t.Log输出的内容✗ go test -run=^TestAtomicType$ -v=== RUN   TestAtomicTypetype_val_test.go:43: store 10 add 1 ok, got 11type_val_test.go:49: an1.Swap(100) ok, got 100type_val_test.go:55: atomic data not swapped, now data is 100, but param1 for compare is 10type_val_test.go:62: atomic data swapped, now data is 200--- PASS: TestAtomicType (0.00s)PASSok      atomic_demo    0.356s*/
}

另外2个官方示例就不贴了,原理都一样, 大家有兴趣的话可以自己去瞄瞄 pkg.go.dev/sync/atomic#example-Value-ReadMostly

怎么样,这个看似很神秘,其实也很简单的底层原子级内存操作是不是明白了?

atomic类型定义参考

type Bool
func (x *Bool) CompareAndSwap(old, new bool) (swapped bool)
func (x *Bool) Load() bool
func (x *Bool) Store(val bool)
func (x *Bool) Swap(new bool) (old bool)
type Int32
func (x *Int32) Add(delta int32) (new int32)
func (x *Int32) CompareAndSwap(old, new int32) (swapped bool)
func (x *Int32) Load() int32
func (x *Int32) Store(val int32)
func (x *Int32) Swap(new int32) (old int32)
type Int64
func (x *Int64) Add(delta int64) (new int64)
func (x *Int64) CompareAndSwap(old, new int64) (swapped bool)
func (x *Int64) Load() int64
func (x *Int64) Store(val int64)
func (x *Int64) Swap(new int64) (old int64)
type Pointer
func (x *Pointer[T]) CompareAndSwap(old, new *T) (swapped bool)
func (x *Pointer[T]) Load() *T
func (x *Pointer[T]) Store(val *T)
func (x *Pointer[T]) Swap(new *T) (old *T)
type Uint32
func (x *Uint32) Add(delta uint32) (new uint32)
func (x *Uint32) CompareAndSwap(old, new uint32) (swapped bool)
func (x *Uint32) Load() uint32
func (x *Uint32) Store(val uint32)
func (x *Uint32) Swap(new uint32) (old uint32)
type Uint64
func (x *Uint64) Add(delta uint64) (new uint64)
func (x *Uint64) CompareAndSwap(old, new uint64) (swapped bool)
func (x *Uint64) Load() uint64
func (x *Uint64) Store(val uint64)
func (x *Uint64) Swap(new uint64) (old uint64)
type Uintptr
func (x *Uintptr) Add(delta uintptr) (new uintptr)
func (x *Uintptr) CompareAndSwap(old, new uintptr) (swapped bool)
func (x *Uintptr) Load() uintptr
func (x *Uintptr) Store(val uintptr)
func (x *Uintptr) Swap(new uintptr) (old uintptr)
type Value
func (v *Value) CompareAndSwap(old, new any) (swapped bool)
func (v *Value) Load() (val any)
func (v *Value) Store(val any)
func (v *Value) Swap(new any) (old any)

 atomic函数的定义参考

这个看上去一大堆,其实下面这些个函数的定义官方都不建议使用! 在手册中你都能看到这样一句话“Consider using the more ergonomic and less error-prone xxx instead.”  都建议你使用更符合人体工程学的且不容易出错的 xxx 方法代替

func AddInt32(addr *int32, delta int32) (new int32)
func AddInt64(addr *int64, delta int64) (new int64)
func AddUint32(addr *uint32, delta uint32) (new uint32)
func AddUint64(addr *uint64, delta uint64) (new uint64)
func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)
func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)
func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)
func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)
func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)
func LoadInt32(addr *int32) (val int32)
func LoadInt64(addr *int64) (val int64)
func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
func LoadUint32(addr *uint32) (val uint32)
func LoadUint64(addr *uint64) (val uint64)
func LoadUintptr(addr *uintptr) (val uintptr)
func StoreInt32(addr *int32, val int32)
func StoreInt64(addr *int64, val int64)
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
func StoreUint32(addr *uint32, val uint32)
func StoreUint64(addr *uint64, val uint64)
func StoreUintptr(addr *uintptr, val uintptr)
func SwapInt32(addr *int32, new int32) (old int32)
func SwapInt64(addr *int64, new int64) (old int64)
func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)
func SwapUint32(addr *uint32, new uint32) (old uint32)
func SwapUint64(addr *uint64, new uint64) (old uint64)
func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)

参考文档 atomic package - sync/atomic - Go Packages

这篇关于一文搞明白golang底层原子级内存操作 的使用(sync atomic包)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028974

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置