Pandas读取文本文件为多列

2024-06-04 01:04

本文主要是介绍Pandas读取文本文件为多列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要使用Pandas将文本文件读取为多列数据,你可以使用pandas.read_csv()函数,并通过指定适当的分隔符来确保正确解析文件中的数据并将其分隔到多个列中。

假设你有一个以逗号分隔的文本文件(CSV格式),每一行包含多个值,你可以这样读取它:

在这里插入图片描述

1、问题背景

当使用Pandas读取文本文件时,可能会遇到整行被读为一列的情况,导致数据无法正确解析。

2、解决方案

有两种常见的解决方案:

  1. 使用正确的分隔符:确保使用的分隔符与文本文件中的数据分隔符一致。在示例中,分隔符应为r’\s+'(一个或多个空格)。
  2. 使用delim_whitespace=True:设置delim_whitespace参数为True,Pandas会自动检测分隔符,并根据空格将文本文件中的数据分隔为多列。

下面是使用正确分隔符的示例代码:

import pandas as pd
from StringIO import StringIOa = '''
TRE-G3T- Triumph-        0.000 11/06/2013 313585.10 1765.00000 11/06/2013 313600.10   41 20 54.57907  -70 38 14.25924      -30.400       -1.379   893059.006  2588821.543     2834.294   -19545.615      -45.849        0.985        1.058        3.399        3.694      -15.203        1.099   1.0000 6   6.37  4        0.000 I             -0.084     0.086    -0.059   0.000   0.000   0.000   363026.471  4578737.512      -30.400
TRE-G3T- Triumph-        0.000 11/06/2013 313585.20 1765.00000 11/06/2013 313600.20   41 20 54.61145  -70 38 14.22044      -30.332       -1.311   893061.933  2588824.850     2835.196   -19544.617      -45.779        0.944        1.015        3.313        3.592      -15.135       -3.365   1.4883 6   6.35  4        0.001 I              0.833    -0.485    -1.570   0.000   0.000   0.000   363027.391  4578738.493      -30.332
TRE-G3T- Triumph-        0.000 11/06/2013 313585.30 1765.00000 11/06/2013 313600.30   41 20 54.48685  -70 38 14.10862      -29.190       -0.169   893070.589  2588812.325     2837.797   -19548.465      -44.651        0.950        1.017        3.254        3.539      -13.994       -8.197   1.0000 6   5.70  4        0.001 I             -0.158     0.003     0.061   0.000   0.000   0.000   363029.917  4578734.602      -29.190
'''df = pd.read_csv(StringIO(a), delimiter=r'\s+', header=None)print(df.shape)
print(df.head())

输出结果:

(3, 42)0         1   2           3         4     5           6         7   \
0  TRE-G3T-  Triumph-   0  11/06/2013  313585.1  1765  11/06/2013  313600.1   
1  TRE-G3T-  Triumph-   0  11/06/2013  313585.2  1765  11/06/2013  313600.2   
2  TRE-G3T-  Triumph-   0  11/06/2013  313585.3  1765  11/06/2013  313600.3   8   9         10  11  12        13      14     15          16           17  \
0  41  20  54.57907 -70  38  14.25924 -30.400 -1.379  893059.006  2588821.543   
1  41  20  54.61145 -70  38  14.22044 -30.332 -1.311  893061.933  2588824.850   
2  41  20  54.48685 -70  38  14.10862 -29.190 -0.169  893070.589  2588812.325   18         19      
0  2834.294 -19545.615 ...  
1  2835.196 -19544.617 ...  
2  2837.797 -19548.465 ...  [3 rows x 42 columns]

下面是使用delim_whitespace=True的示例代码:

import pandas as pd
from StringIO import StringIOa = '''
TRE-G3T- Triumph-        0.000 11/06/2013 313585.10 1765.00000 11/06/2013 313600.10   41 20 54.57907  -70 38 14.25924      -30.400       -1.379   893059.006  2588821.543     2834.294   -19545.615      -45.849        0.985        1.058        3.399        3.694      -15.203        1.099   1.0000 6   6.37  4        0.000 I             -0.084     0.086    -0.059   0.000   0.000   0.000   363026.471  4578737.512      -30.400
TRE-G3T- Triumph-        0.000 11/06/2013 313585.20 1765.00000 11/06/2013 313600.20   41 20 54.61145  -70 38 1

所以说最终无论我们的文本文件使用何种分隔符,Pandas都提供了灵活的方式来读取它并将其解析为多列数据。今天的知识就介绍到这里,有啥问题可以截图留言讨论。

这篇关于Pandas读取文本文件为多列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028620

相关文章

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring Boot读取配置文件的五种方式小结

《SpringBoot读取配置文件的五种方式小结》SpringBoot提供了灵活多样的方式来读取配置文件,这篇文章为大家介绍了5种常见的读取方式,文中的示例代码简洁易懂,大家可以根据自己的需要进... 目录1. 配置文件位置与加载顺序2. 读取配置文件的方式汇总方式一:使用 @Value 注解读取配置方式二

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读